Abstract:This work aimed to evaluate the potential of constructed wetlands (CWs) for removal of antibiotics (enrofloxacin and oxytetracycline) and antibiotic resistant bacteria from saline aquaculture wastewaters. Removal of other contaminants (nutrients, organic matter and metals) and toxicity reduction and the influence of antibiotics with these processes were evaluated. Thus, nine CWs microcosms, divided into three treatments, were assembled and used to treat wastewater (doped or not with the selected antibiotics) between October and December of 2015. Each week treated wastewater was removed and new wastewater (doped or not) was introduced in CWs. Results showed >99% of each antibiotic was removed in CWs. After three weeks of adaptation, removal percentages >95% were also obtained for total bacteria and for antibiotic resistant bacteria. Nutrients, organic matter and metal removal percentages in CWs treated wastewater were identical in the absence and in the presence of each antibiotic. Toxicity in treated wastewaters was significantly lower than in initial wastewaters, independently of antibiotics presence. Results showed CWs have a high efficiency for removing enrofloxacin or oxytetracycline as well as antibiotic resistant bacteria from saline aquaculture wastewaters. CWs can also remove other contaminants independently of drug presence, making the aquaculture wastewater possible to be reutilized and/or recirculated.
Oil spills are among the most catastrophic events to marine ecosystems and current remediation techniques are not suitable for ecological restoration. Bioremediation approaches can take advantage of the activity of microorganisms with biodegradation capacity thus helping to accelerate the recovery of contaminated environments. The use of native microorganisms can increase the bioremediation efficiency since they have higher potential to survive in the natural environment while preventing unpredictable ecological impacts associated with the introduction of non-native organisms. In order to know the geographical scale to which a native bioremediation consortium can be applied, we need to understand the spatial heterogeneity of the natural microbial communities with potential for hydrocarbon degradation. In the present study, we aim to describe the genetic diversity and the potential of native microbial communities to degrade petroleum hydrocarbons, at an early stage of bioremediation, along the NW Iberian Peninsula coast, an area particularly susceptible to oil spills. Seawater samples collected in 47 sites were exposed to crude oil for 2 weeks, in enrichment experiments. Seawater samples collected in situ, and samples collected after the enrichment with crude oil, were characterized for prokaryotic communities by using 16S rRNA gene amplicon sequencing and predictive functional profiling. Results showed a drastic decrease in richness and diversity of microbial communities after the enrichment with crude oil. Enriched microbial communities were mainly dominated by genera known to degrade hydrocarbons, namely Alcanivorax, Pseudomonas, Acinetobacter, Rhodococcus, Flavobacterium, Oleibacter, Marinobacter, and Thalassospira, without significant differences between geographic areas and locations. Predictive functional profiling of the enriched microbial consortia showed a high potential to degrade the aromatic compounds aminobenzoate, benzoate, chlorocyclohexane, chlorobenzene, ethylbenzene, naphthalene, polycyclic aromatic compounds, styrene, toluene, and xylene. Only a few genera contributed for more than 50% of this genetic potential for aromatic compounds degradation in the enriched communities, namely Alcanivorax, Thalassospira, and Pseudomonas spp. This work is a starting point for the future development of prototype consortia of hydrocarbon-degrading bacteria to mitigate oil spills in the Iberian NW coast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.