Monozygous twins share a common genotype. However, most monozygotic twin pairs are not identical; several types of phenotypic discordance may be observed, such as differences in susceptibilities to disease and a wide range of anthropomorphic features. There are several possible explanations for these observations, but one is the existence of epigenetic differences. To address this issue, we examined the global and locus-specific differences in DNA methylation and histone acetylation of a large cohort of monozygotic twins. We found that, although twins are epigenetically indistinguishable during the early years of life, older monozygous twins exhibited remarkable differences in their overall content and genomic distribution of 5-methylcytosine DNA and histone acetylation, affecting their gene-expression portrait. These findings indicate how an appreciation of epigenetics is missing from our understanding of how different phenotypes can be originated from the same genotype.DNA methylation ͉ epigenetics ͉ histones H uman monozygotic (MZ) twins account for 1 in 250 live births (1). The origin of MZ twins is attributed to two or more daughter cells of a single zygote undergoing independent mitotic divisions, leading to independent development and births. They are considered genetically identical, but significant phenotypic discordance between them may exist. This quality is particularly noticeable for psychiatric diseases, such as schizophrenia and bipolar disorder (2). MZ twins have been used to demonstrate the role of environmental factors in determining complex diseases and phenotypes, but the true nature of the phenotypic discordance nevertheless remains extremely poorly understood. In this context, differences in the placenta, amniotic sac, and vascularization of the separate cell masses or even mosaicism in genetic and cytogenetic markers in MZ may exist (3), although the published studies are very few in number. Thus, the real causes for MZ twin discordance for common diseases and traits remain to be established. Epigenetic differences may be an important part of the solution to this puzzle. Indeed, epigenetic profiles may represent the link between an environmental factor and phenotypic differences in MZ twins. Cloned animals provide another example of how epigenetics may explain phenotypic differences in beings that have identical genetic sequences. In this case, inefficient epigenetic reprogramming of the transplanted nucleus is associated with aberrations in imprinting, aberrant growth, and lethality beyond a threshold of faulty epigenetic control (4). MZ twins are another phenomenon in which epigenetics can ''make the difference.'' To address this possibility, we have profiled the epigenetic patterns related to global and locus-specific DNA methylation and histone H3 and H4 acetylation in the largest series of MZ twins for which molecular studies have been reported. Materials and MethodsSubjects. Eighty volunteer Caucasian twins from Spain were recruited in the study, including 30 male and 50 female subje...
ObjectiveRheumatoid arthritis (RA) is a chronic systemic autoimmune disease that mainly targets joints. Monocytes and macrophages are critical in RA pathogenesis and contribute to inflammatory lesions. These extremely plastic cells respond to extracellular signals which cause epigenomic changes that define their pathogenic phenotype. Here, we interrogated how DNA methylation alterations in RA monocytes are determined by extracellular signals.MethodsHigh-throughput DNA methylation analyses of patients with RA and controls and in vitro cytokine stimulation were used to investigate the underlying mechanisms behind DNA methylation alterations in RA as well as their relationship with clinical parameters, including RA disease activity.ResultsThe DNA methylomes of peripheral blood monocytes displayed significant changes and increased variability in patients with RA with respect to healthy controls. Changes in the monocyte methylome correlate with DAS28, in which high-activity patients are divergent from healthy controls in contrast to remission patients whose methylome is virtually identical to healthy controls. Indeed, the notion of a changing monocyte methylome is supported after comparing the profiles of same individuals at different stages of activity. We show how these changes are mediated by an increase in disease activity-associated cytokines, such as tumour necrosis factor alpha and interferons, as they recapitulate the DNA methylation changes observed in patients in vitro.ConclusionWe demonstrate a direct link between RA disease activity and the monocyte methylome through the action of inflammation-associated cytokines. Finally, we have obtained a DNA methylation-based mathematical formula that predicts inflammation-mediated disease activity for RA and other chronic immune-mediated inflammatory diseases.
In relative terms, Spanish motorcyclists are more likely to be involved in crashes than other drivers and this tendency is constantly increasing. The objective of this study is to identify the factors that are related to being an offender in motorcycle accidents. A binary logit model is used to differentiate between offender and non-offender motorcyclists. A motorcyclist was considered to be offender when s/he had committed at least one traffic offense at the moment previous to the crash. The analysis is based that inexperienced, older females, not using helmets, absent-minded and non-fatigued riders are more likely to be offenders. Moreover, riding during the night, on weekends, for leisure purposes and along roads in perfect condition, mainly on curves, predict offenses among motorcyclists. The findings of this study are expected to be useful in developing traffic policy decisions in order to improve motorcyclist safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.