Aging is associated with increased inflammation and alterations in mitochondrial biogenesis, which promote the development of cardiovascular diseases. Emerging evidence suggests a role for sirtuins, which are NAD
+
-dependent deacetylases, in the regulation of cardiovascular inflammation and mitochondrial biogenesis. Sirtuins are regulated by sex or sex hormones and are decreased during aging in animal models. We hypothesized that age-related alterations in cardiac Sirt1 and Sirt3 occur in the human heart and examined whether these changes are associated with a decrease in anti-oxidative defense, inflammatory state and mitochondrial biogenesis. Using human ventricular tissue from young (17-40 years old) and old (50-68 years old) individuals, we found significantly lower Sirt1 and Sirt3 expression in old female hearts than in young female hearts. Additionally, lower expression of the anti-oxidative protein SOD2 was observed in old female hearts than in young female hearts. Aging in female hearts was associated with a significant increase in the number of cardiac macrophages and pro-inflammatory cytokines, as well as NF-kB upregulation, indicating a pro-inflammatory shift. Aging-associated pathways in the male hearts were different, and no changes in Sirt1 and Sirt3 or cardiovascular inflammation were observed. In conclusion, the present study revealed a female sex-specific downregulation of Sirt1 and Sirt3 in aged hearts, as well as a decline in mitochondrial anti-oxidative defense and a pro-inflammatory shift in old female hearts but not in male hearts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.