Dendritic cells (DC) are able to capture, process, and present exogenous Ag to CD8+ T lymphocytes through MHC class I, a process referred to as cross-presentation. In this study, we demonstrate that CD103+ (CD11chighCD11blow) and CD103− (CD11cintCD11bhigh) DC residing in the lung-draining bronchial lymph node (brLN) have evolved to acquire opposing functions in presenting innocuous inhaled Ag. Thus, under tolerogenic conditions, CD103− DC are specialized in presenting innocuous Ag to CD4+ T cells, whereas CD103+ DC, which do not express CD8α, are specialized in presenting Ag exclusively to CD8+ T cells. In CCR7-deficient but not in plt/plt mice, Ag-carrying CD103+ DC are largely absent in the brLN, although CD103+ DC are present in the lung of CCR7-deficient mice. As a consequence, adoptively transferred CD8+ T cells can be activated under tolerizing conditions in plt/plt but not in CCR7-deficient mice. These data reveal that CD103+ brLN DC are specialized in cross-presenting innocuous inhaled Ag in vivo. Because these cells are largely absent in CCR7−/− mice, our findings strongly suggest that brLN CD103+ DC are lung-derived and that expression of CCR7 is required for their migration from the lung into its draining lymph node.
CD103 (alpha(E)) integrin expression distinguishes a population of dendritic cells (DCs) that can be found in many if not all lymphoid and non-lymphoid organs. CD103(+) DCs display distinct functional activities. Migratory CD103(+) DCs derived from skin, lung, and intestine efficiently present exogenous antigens in their corresponding draining lymph nodes to specific CD8(+) T cells through a mechanism known as cross-presentation. On the T cells they prime, intestinal CD103(+) DCs can drive the induction of the chemokine receptor CCR9 and alpha(4)beta(7) integrin, both known as gut-homing receptors. CD103(+) DCs also contribute to control inflammatory responses and intestinal homeostasis by fostering the conversion of naive T cells into induced Foxp3(+) regulatory T cells, a mechanism that relies on transforming growth factor-beta and retinoic acid signaling. This review discusses recent findings that identify murine CD103(+) DCs as important regulators of the immune response.
Allergic airway diseases such as asthma are caused by a failure of the immune system to induce tolerance against environmental Ags. The underlying molecular and cellular mechanisms that initiate tolerance are only partly understood. In this study, we demonstrated that a CCR7-dependent migration of both CD103+ and CD103− lung dendritic cells (DC) to the bronchial lymph node (brLN) is indispensable for this process. Although inhaled Ag is amply present in the brLN of CCR7-deficient mice, T cells cannot be tolerized because of the impaired migration of Ag-carrying DC and subsequent transport of Ag from the lung to the draining lymph node. Consequently, the repeated inhalation of Ag protects wild-type but not CCR7-deficient mice from developing allergic airway diseases. Thus, the continuous DC-mediated transport of inhaled Ag to the brLN is critical for the induction of tolerance to innocuous Ags.
Immunosuppression is currently the treatment of choice to attenuate the chronic deterioration of tissue function as a result of the effector mechanisms of the immunological response in transplant rejection and autoimmune diseases. However, global immunosuppression greatly increases the risk of acquiring life-threatening infections and is associated with organ toxicity when used long-term. Thus, alternative approaches that inhibit only the unwanted immune responses and preserve general immunity are highly desirable. The receptor/ligand pairs involved in the cross-talk between DC and T cells have been the focus of intense and exciting research during the last decade. The HVEM/LIGHT/BTLA/CD160 costimulatory/coinhibitory pathway has emerged as a potential target for the development of immune therapeutic interventions. Herein, we will summarize and discuss how blockade of the costimulatory HVEM/LIGHT interaction or agonist signaling through the inhibitory BTLA and CD160 receptors could contribute to the control of deleterious immune responses.
Dendritic cells (DC) represent a rather heterogeneous cell population with regard to morphology, phenotype, and function and, like most cells of the immune system, are subjected to a continuous renewal process. CD103+ (integrin αE) DC have been identified as a major mucosal DC subset involved in the induction of tissue-specific homing molecules on T cells, but little is known about progenitors able to replenish this DC subset. Herein we report that lineage (lin)−CX3CR1+c-kit+ (GFP+c-kit+) bone marrow cells can differentiate to either CD11c+CD103− or CD11c+CD103+ DC in vitro and in vivo. Gene expression as well as functional assays reveal distinct phenotypical and functional properties of both subsets generated in vitro. CD103− DC exhibit enhanced phagocytosis and respond to LPS stimulation by secreting proinflammatory cytokines, whereas CD103+ DC express high levels of costimulatory molecules and efficiently induce allogeneic T cell proliferation. Following adoptive transfer of GFP+c-kit+ bone marrow cells to irradiated recipients undergoing allergic lung inflammation, we identified donor-derived CD103+ DC in lung and the lung-draining bronchial lymph node. Collectively, these data indicate that GFP+c-kit+ cells contribute to the replenishment of CD103+ DC in lymphoid and nonlymphoid organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.