ABSTRACT1. The term 'rambla' defines watercourses with specific geomorphological features that make them different from all other temporary streams. Most ramblas represent extreme habitats for plants and animals that have to be adapted to high salinity and extreme hydrological fluctuations with severe dry periods and floods. Both factors shape the structure and functioning of the whole aquatic ecosystem.2. Biological communities in ramblas are diverse and rich in endemic species. Habitats of interest within the EU are extensively represented in ramblas and their associated wetlands. Ramblas also fulfil previously unrecognized functional and cultural values, such as helping to control non-pointsource pollution in agricultural areas and to provide a variety of historic and educational resources. However, they are a threatened ecosystem because of the diversity of uses and derived impacts.3. To characterize and describe the diversity of ramblas in south-east Spain, an extensive survey was carried out in 2000-2001 in the province of Murcia. Based on the lithology where ramblas are located, they were grouped in three categories: ramblas of marl, limestone and metamorphic basins.4. Rambla categories differ in structural parameters, hydrology, water chemistry, biological communities and their vulnerability to a range of human impacts, thus requiring a flexible approach to their management and conservation.
Summary 1. Primary production by Chara vulgaris and by epipelic and epilithic algal assemblages was measured in a semiarid, Mediterranean stream (Chicamo stream, Murcia, Spain) during one annual cycle. 2. The rates of gross primary production (GPP) and community respiration (CR) were determined for each algal assemblage using oxygen change in chambers. The net daily metabolism (NDM) and the GPPd−1 : CR24 ratio were estimated by patch‐weighting the assemblage‐level metabolism values. 3. Gross primary production and CR showed significant differences between assemblages and dates. The highest rates were measured in summer and spring, while December was the only month when there were no significant differences in either parameters between assemblages. GPP was strongly correlated with respiration, but not with algal biomass. 4. Chara vulgaris showed the highest mean annual metabolic rates (GPP = 2.80 ± 0.83 gC m−2 h−1, CR = 0.76 ± 0.29 gC m−2 h−1), followed by the epilithic assemblage (GPP = 1.97 ± 0.73 gC m−2 h−1, CR = 0.41 ± 0.12 gC m−2 h−1) and epipelic algae (GPP = 1.36 ± 0.22 gC m−2 h−1, CR = 0.39 ± 0.06 gC m−2 h−1). 5. The epipelic assemblage dominated in terms of biomass (82%) and areal cover (88%), compared with the other primary producers. Epipelic algae contributed 84% of gross primary production and 86% of community respiration in the stream. 6. Mean monthly air temperature was the best single predictor of macrophyte respiration and of epipelic GPP and CR. However, ammonium concentration was the best single predictor of C. vulgaris GPP, and suspended solid concentration of epilithon GPP and CR. 7. Around 70% of the variation in both mean GPP and mean CR was explained by the mean monthly air temperature alone. A multiple regression model that included conductivity, PAR and nitrates in addition to mean monthly air temperature, explained 99.99% of the variation in mean CR. 8. Throughout the year, NDM was positive (mean value 7.03 gC m−2 day−1), while the GPP : CR24 ratio was higher than 1, confirming the net autotrophy of the system.
The European Water Framework Directive establishes the need to define stream type-specific reference conditions to identify ''high ecological status''. Methods for selecting reference sites using a priori criteria have been proposed by many authors. A review of these criteria revealed that the most relevant criteria for streams and rivers were those related to riparian vegetation, diffuse and point sources of pollution, river morphology and hydrological conditions and regulation. In this work, we propose 20 criteria that reflect the characteristics of Mediterranean streams and their most frequent disturbances for the selection of reference sites in Mediterranean streams in Spain. We studied 162 sites located in 33 Mediterranean basins belonging to five stream types. Of the locations, 57% were selected as a priori reference sites by having applied the proposed criteria. Reference sites were identified for all stream types except for ''large watercourses'' which includes the lower reaches of some rivers in this study area. This a priori selection of reference sites was subjected to validation using the macroinvertebrate community by applying of an IBMWP threshold, which is considered to be an indicator of undisturbed sites in Mediterranean streams. This approach determined that whole of this selection (100%) could be considered valid reference sites. Furthermore, we identified differences in the reference conditions for each stream type on the basis of macroinvertebrate assemblage composition.
1. According to the guidelines of the European Water Framework Directive, assessment of the ecological quality of streams and rivers should be based on ecotype-specific reference conditions. Here, we assess two approaches for establishing a typology for Mediterranean streams: a top-down approach using environmental variables and bottom-up approach using macroinvertebrate assemblages. 2. Classification of 162 sites using environmental variables resulted in five ecotypes: (i) temporary streams; (ii) evaporite calcareous streams at medium altitude; (iii) siliceous headwater streams at high altitude; (iv) calcareous headwater streams at medium to high altitude and (v) large watercourses. 3. Macroinvertebrate communities of minimally disturbed sites (n ¼ 105), grouped using UPGMA (unweighted pair-group method using arithmetic averages) on Bray-Curtis similarities, were used to validate four of the five ecotypes obtained using environmental variables; ecotype 5, large watercourses, was not included as this group had no reference sites. 4. Analysis of similarities (ANOSIM A NO S IM ) showed that macroinvertebrate assemblage composition differed among three of the four ecotypes, resulting in differences between the bottom-up and top-down classification approaches. Siliceous streams were clearly different from the other three ecotypes, evaporite and calcareous ecotypes did not show large differences in macroinvertebrate assemblages and temporary streams formed a very heterogeneous group because of large variability in salinity and hydrology. 5. This study showed that stream classification schemes based on environmental variables need to be validated using biological variables. Furthermore, our findings indicate that special attention should be given to the classification of temporary streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.