The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) pandemic has attracted interest because of its global rapid spread, clinical severity, high mortality rate and capacity to overwhelm healthcare systems [1, 2]. SARS-CoV-2 transmission occurs mainly through droplets, although surface contamination contributes and debate continues on aerosol transmission [3-5]. The disease is usually characterised by initial signs and symptoms [4-9] similar to those of related viral infections (e.g. influenza, SARS, Middle East respiratory syndrome) and tuberculosis (TB), although prognosis and complications sometimes differ. Experience with concomitant TB and COVID-19 is extremely limited. One case-control study of COVID-19 patients with interferon-γ release assay-confirmed TB infection [10] and a single case of TB with COVID-19 have been submitted to, but not yet published in, peer-reviewed journals [11]. In a recent analysis of 1217 consecutive respiratory specimens collected from COVID-19 patients (Mycobacterium tuberculosis was not tested), the authors concluded that higher rates of co-infection between SARS-CoV-2 and other respiratory pathogens can be expected [12]. The present study describes the first-ever global cohort of current or former TB patients (post-TB treatment sequelae) with COVID-19, recruited by the Global Tuberculosis Network (GTN) in eight countries and three continents. No analysis for determinants of outcome was attempted. The study is nested within the GTN project monitoring adverse drug reactions [13, 14] for which the coordinating centre has an ethics committee approval, alongside ethics clearance from participating centres according to respective national regulation [13, 14]. A specific nested database was created in collaboration with the eight countries reporting patients with TB and COVID-19; the remaining countries had not yet observed COVID-19 in their patients at the time this manuscript was written. Continuous variables, if not otherwise specified, are presented as medians with interquartile ranges. Overall, 49 consecutive patients with current or former TB and COVID-19 from 26 centres in Belgium (n=1), Brazil (Porto Alegre, Rio Grande do Sul State; n=1), France (n=12), Italy (n=17), Russia (Moscow Region; n=6), Singapore (n=1), Spain (n=10) and Switzerland (Vaud Canton; n=1) were recruited (dataset updated as of
The 3RH regimen facilitates adherence to LTBI treatment and offers a safe, well-tolerated and effective alternative.
Background: The impact of COVID-19 on the diagnosis and management of tuberculosis (TB) patients is unknown. Methods: Participating centres completed a structured web-based survey regarding changes to TB patient management during the COVID-19 pandemic. The study also included data from participating centres on patients aged !18 diagnosed with TB in 2 periods: March 15 to June 30, 2020 and March 15 to June 30, 2019. Clinical variables and information about patient household contacts were retrospectively collected. Results: A total of 7 (70%) TB units reported changes in their usual TB team operations. Across both periods of study, 169 patients were diagnosed with active TB (90 in 2019, 79 in 2020). Patients diagnosed in 2020 showed more frequent bilateral lesions in chest X-ray than patients diagnosed in 2019 (P = 0.004). There was a higher percentage of latent TB infection and active TB among children in households of patients diagnosed in 2020, compared with 2019 (P = 0.001). Conclusions: The COVID-19 pandemic has caused substantial changes in TB care. TB patients diagnosed during the COVID-19 pandemic showed more extended pulmonary forms. The increase in latent TB infection and active TB in children of patient households could reflect increased household transmission due to anti-COVID-19 measures.
BackgroundSmoking is a risk factor for tuberculosis (TB) infection and disease progression. Tobacco smoking increases susceptibility to TB in a variety of ways, one of which is due to a reduction of the IFN-γ response. Consequently, an impaired immune response could affect performance of IFN-γ Release Assays (IGRAs).ObjectiveIn the present study, we assess the impact of direct tobacco smoking on radiological manifestations, sputum conversion and immune response to Mycobacterium tuberculosis, analyzing IFN-γ secretion by IGRAs.MethodsA total of 525 participants were studied: (i) 175 active pulmonary TB patients and (ii) 350 individuals coming from contact tracing studies, 41 of whom were secondary TB cases. Clinical, radiological and microbiological data were collected. T-SPOT.TB and QFN-G-IT were processed according manufacturer’s instructions.ResultsIn smoking patients with active TB, QFN-G-IT (34.4%) and T-SPOT.TB (19.5%) had high frequencies of negative results. In addition, by means of an unconditional logistic regression, smoking was a main factor associated with IGRAs’ false-negative results (aOR: 3.35; 95%CI:1.47–7.61; p<0.05). Smoking patients with active TB presented a high probability of having cavitary lesions (aOR: 1.88; 95%CI:1.02–3.46;p<0.05). Mean culture negativization (months) ± standard deviation (SD) was higher in smokers than in non-smokers (2.47±1.3 versus 1.69±1.4). Latent TB infection (LTBI) was favored in smoking contacts, being a risk factor associated with infection (aOR: 11.57; 95%CI:5.97–22.41; p<0.00005). The IFN-γ response was significantly higher in non-smokers than in smokers. Smoking quantity and IFN-γ response analyzed by IGRAs were dose-dependent related.ConclusionsSmoking had a negative effect on radiological manifestations, delaying time of sputum conversion. Our data establish a link between tobacco smoking and TB due to a weakened IFN-γ response caused by direct tobacco smoke.
The immunological characterization of different cell markers has opened the possibility of considering them as immune tools for tuberculosis (TB) management, as they could correlate with TB latency/disease status and outcome. CD4+ T-cells producing IFN-γ+ with a low expression of CD27 have been described as an active TB marker. In addition, there are unknown homing receptors related to TB, such as CCR4, which might be useful for understanding TB pathogenesis. The aim of our study is focused on the assessment of several T-cell subsets to understand immune-mechanisms in TB. This phenotypic immune characterization is based on the study of the specific immune responses of T-cells expressing CD27 and/or CCR4 homing markers. Subjects enrolled in the study were: (i) 22 adult patients with active TB, and (ii) 26 individuals with latent TB infection (LTBI). Blood samples were drawn from each patient. The expression of CD27 and/or CCR4 markers were analyzed within CD4+ T-cells producing: (i) IFN-γ+, (ii) TNF-α+, (iii) TNF-α+IFN-γ+, and (iv) IFN-γ+ and/or TNF-α+. The percentage of CD27− within all CD4+ T-cell populations analyzed was significantly higher on active TB compared to LTBI after PPD or ESAT-6/CFP-10 stimulation. As previously reported, a ratio based on the CD27 median fluorescence intensity (MFI) was also explored (MFI of CD27 in CD4+ T-cells over MFI of CD27 in IFN-γ+CD4+ T-cells), being significantly increased during disease (p < 0.0001 after PPD or ESAT-6/CFP-10 stimulation). This ratio was also assessed on the other CD4+ T-cells functional profiles after specific stimulation, being significantly associated with active TB. Highest diagnostic accuracies for active TB (AUC ≥ 0.91) were achieved for: (i) CD27 within IFN-γ+TNF-α+CD4+ T-cells in response to ESAT-6/CFP-10, (ii) CD27 and CCR4 markers together within IFN-γ+CD4+ T-cells in response to PPD, and (iii) CD27 MFI ratio performed on IFN-γ+TNF-α+CD4+ T-cells after ESAT-6/CFP-10 stimulation. The lowest diagnostic accuracy was observed when CCR4 marker was evaluated alone (AUC ≤ 0.77). CD27 and CCR4 expression detection could serve as a good method for immunodiagnosis. Moreover, the immunological characterization of markers/subset populations could be a promising tool for understanding the biological basis of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.