In this work, we prove the convergence of residual distribution schemes to dissipative weak solutions of the Euler equations. We need to guarantee that the residual distribution schemes are fulfilling the underlying structure preserving properties such as positivity of density and internal energy. Consequently, the residual distribution schemes lead to a consistent and stable approximation of the Euler equations. Our result can be seen as a generalization of the Lax-Richtmyer equivalence theorem to nonlinear problems that consistency plus stability is equivalent to convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.