Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with the atmospheric RTM MODTRAN5. Because of MODTRAN’s computational burden and GSA’s demand for many simulations, we first developed a surrogate statistical learning model, i.e., an emulator, that allows approximating RTM outputs through a machine learning algorithm with low computation time. A Gaussian process regression (GPR) emulator was used to reproduce lookup tables of TOA radiance as a function of 12 input variables with relative errors of 2.4%. GSA total sensitivity results quantified the driving variables of emulated TOA radiance along the 400–2500 nm spectral range at 15 cm − 1 (between 0.3–9 nm); overall, the vegetation variables play a more dominant role than atmospheric variables. This suggests the possibility to retrieve biophysical variables directly from at-sensor TOA radiance data. Particularly promising are leaf chlorophyll content, leaf water thickness and leaf area index, as these variables are the most important drivers in governing TOA radiance outside the water absorption regions. A software framework was developed to facilitate the development of retrieval models from at-sensor TOA radiance data. As a proof of concept, maps of these biophysical variables have been generated for both TOA (L1C) and bottom-of-atmosphere (L2A) Sentinel-2 data by means of a hybrid retrieval scheme, i.e., training GPR retrieval algorithms using the RTM simulations. Obtained maps from L1C vs L2A data are consistent, suggesting that vegetation properties can be directly retrieved from TOA radiance data given a cloud-free sky, thus without the need of an atmospheric correction.
Plant primary production is a key driver of several ecosystem functions in seasonal marshes, such as water purification and secondary production by wildlife and domestic animals. Knowledge of the spatio-temporal dynamics of biomass production is therefore essential for the management of resources-particularly in seasonal wetlands with variable flooding regimes. We propose a method to estimate standing aboveground plant biomass using NDVI Land Surface Phenology (LSP) derived from MODIS, which we calibrate and validate in the Doñana National Park's marsh vegetation. Out of the different estimators tested, the Land Surface Phenology maximum NDVI (LSP-Maximum-NDVI) correlated best with ground-truth data of biomass production at five locations from 2001-2015 used to calibrate the models (R 2 = 0.65). Estimators based on a single MODIS NDVI image performed worse (R 2 ≤ 0.41). The LSP-Maximum-NDVI estimator was robust to environmental variation in precipitation and hydroperiod, and to spatial variation in the productivity and composition of the plant community. The determination of plant biomass using remote-sensing techniques, adequately supported by ground-truth data, may represent a key tool for the long-term monitoring and management of seasonal marsh ecosystems.
Point-locality data can be used to translate IUCN habitat classes to land cover to produce area of habitat maps.
Area of Habitat (AOH) is “the habitat available to a species, that is, habitat within its range”. It complements a geographic range map for a species by showing potential occupancy and reducing commission errors. AOH maps are produced by subtracting areas considered unsuitable for the species from their range map, using information on each species’ associations with habitat and elevation. We present AOH maps for 5,481 terrestrial mammal and 10,651 terrestrial bird species (including 1,816 migratory bird species for which we present separate maps for the resident, breeding and non-breeding areas). Our maps have a resolution of 100 m. On average, AOH covered 66 ± 28% of the range maps for mammals and 64 ± 27% for birds. The AOH maps were validated independently, following a novel two-step methodology: a modelling approach to identify outliers and a species-level approach based on point localities. We used AOH maps to produce global maps of the species richness of mammals, birds, globally threatened mammals and globally threatened birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.