A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified 10 novel risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with novel secondary signals at 4 of these). Notably, the new loci include candidate genes with roles in regulation of innate host defenses and T-cell function, underscoring the important contribution of (auto-)immune mechanisms to atopic dermatitis pathogenesis.
Atopic dermatitis (AD) is a common chronic skin disease with high heritability. Apart from filaggrin (FLG), the genes influencing AD are largely unknown. We conducted a genome-wide association meta-analysis of 5,606 cases and 20,565 controls from 16 population-based cohorts and followed up the ten most strongly associated novel markers in a further 5,419 cases and 19,833 controls from 14 studies. Three SNPs met genome-wide significance in the discovery and replication cohorts combined: rs479844 upstream of OVOL1 (OR=0.88, p=1.1×10−13) and rs2164983 near ACTL9 (OR=1.16, p=7.1×10−9), genes which have been implicated in epidermal proliferation and differentiation, as well as rs2897442 in KIF3A within the cytokine cluster on 5q31.1 (OR=1.11, p=3.8×10−8). We also replicated the FLG locus and two recently identified association signals at 11q13.5 (rs7927894, p=0.008) and 20q13.3 (rs6010620, p=0.002). Our results underline the importance of both epidermal barrier function and immune dysregulation in AD pathogenesis.
The pubertal height growth spurt is a distinctive feature of childhood growth reflecting both the central onset of puberty and local growth factors. Although little is known about the underlying genetics, growth variability during puberty correlates with adult risks for hormone-dependent cancer and adverse cardiometabolic health. The only gene so far associated with pubertal height growth, LIN28B, pleiotropically influences childhood growth, puberty and cancer progression, pointing to shared underlying mechanisms. To discover genetic loci influencing pubertal height and growth and to place them in context of overall growth and maturation, we performed genome-wide association meta-analyses in 18 737 European samples utilizing longitudinally collected height measurements. We found significant associations (P < 1.67 × 10(-8)) at 10 loci, including LIN28B. Five loci associated with pubertal timing, all impacting multiple aspects of growth. In particular, a novel variant correlated with expression of MAPK3, and associated both with increased prepubertal growth and earlier menarche. Another variant near ADCY3-POMC associated with increased body mass index, reduced pubertal growth and earlier puberty. Whereas epidemiological correlations suggest that early puberty marks a pathway from rapid prepubertal growth to reduced final height and adult obesity, our study shows that individual loci associating with pubertal growth have variable longitudinal growth patterns that may differ from epidemiological observations. Overall, this study uncovers part of the complex genetic architecture linking pubertal height growth, the timing of puberty and childhood obesity and provides new information to pinpoint processes linking these traits.
The Netherlands Twin Register (NTR) began in 1987 with data collection in twins and their families, including families with newborn twins and triplets. Twenty-five years later, the NTR has collected at least one survey for 70,784 children, born after 1985. For the majority of twins, longitudinal data collection has been done by age-specific surveys. Shortly after giving birth, mothers receive a first survey with items on pregnancy and birth. At age 2, a survey on growth and achievement of milestones is sent. At ages 3, 7, 9/10, and 12 parents and teachers receive a series of surveys that are targeted at the development of emotional and behavior problems. From age 14 years onward, adolescent twins and their siblings report on their behavior problems, health, and lifestyle. When the twins are 18 years and older, parents are also invited to take part in survey studies. In sub-groups of different ages, in-depth phenotyping was done for IQ, electroencephalography , MRI, growth, hormones, neuropsychological assessments, and cardiovascular measures. DNA and biological samples have also been collected and large numbers of twin pairs and parents have been genotyped for zygosity by either micro-satellites or sets of short nucleotide polymorphisms and repeat polymorphisms in candidate genes. Subject recruitment and data collection is still ongoing and the longitudinal database is growing. Data collection by record linkage in the Netherlands is beginning and we expect these combined longitudinal data to provide increased insights into the genetic etiology of development of mental and physical health in children and adolescents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.