Biomass growth, micronucleus induction, and antioxidative stress enzymes (superoxide dismutase, peroxidase, glutathione reductase, and catalase) were investigated simultaneously in the Vicia faba plant exposed to cadmium in solution. The biomass lowest-observed-effect concentration (LOEC) value was 2,000 microM Cd2+. In the shoots, enzymic activities increased without concentration-response relationships. In the roots, after an initial increase, activities of all enzymes showed negative concentration-response relationships. A significant increase in micronucleus induction was observed at 20 microM Cd2+. Regarding sensitivity, our results showed that biomass endpoint was less sensitive than micronucleus induction, which was less sensitive than antioxidative enzyme activities. The increase of antioxidant stress enzyme activities in response to cadmium exposure may be taken as evidence for an enhanced detoxification capacity of V. faba plants toward reactive oxygen species (and derivatives) that might be generated in the stressed plants. Concomitant micronucleus induction may be also interpreted as a consequence of oxidative stress, upholding the view that cadmium-induced DNA damage is, to some extent, via generation of reactive (intermediate) oxygen species.
Biomass growth, micronucleus induction, and antioxidative stress enzymes (superoxide dismutase, peroxidase, glutathione reductase, and catalase) were investigated simultaneously in the Vicia faba plant exposed to cadmium in solution. The biomass lowest-observed-effect concentration (LOEC) value was 2,000 microM Cd2+. In the shoots, enzymic activities increased without concentration-response relationships. In the roots, after an initial increase, activities of all enzymes showed negative concentration-response relationships. A significant increase in micronucleus induction was observed at 20 microM Cd2+. Regarding sensitivity, our results showed that biomass endpoint was less sensitive than micronucleus induction, which was less sensitive than antioxidative enzyme activities. The increase of antioxidant stress enzyme activities in response to cadmium exposure may be taken as evidence for an enhanced detoxification capacity of V. faba plants toward reactive oxygen species (and derivatives) that might be generated in the stressed plants. Concomitant micronucleus induction may be also interpreted as a consequence of oxidative stress, upholding the view that cadmium-induced DNA damage is, to some extent, via generation of reactive (intermediate) oxygen species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.