Background: Gliadins, a family of wheat proteins, are central to the pathogenesis of celiac disease (CD). In addition to 'immunogenic' effects, gliadin directly affects cultured cells and intestine preparations, and produces damage in vivo, via a separate 'toxic' peptide, such as A-gliadin p31-43 (P31-43). Aims: Understanding the molecular mechanisms underlying direct non T-cell mediated effects of gliadin peptides, and assessing their potential role in promoting CD.Method: Gliadin effects were tested on a number of cell lines and on cultured mucosa samples by evaluating cytoskeleton rearrangements, endocytosis, proliferation and apoptosis. Standard biochemical methods were used to assess prolonged epidermal growth factor receptor (EGFR) activation. Results: Crude gliadin peptic-tryptic peptides (PTG], or P31-43 alone, fully reproduce the effects of epidermal growth factor (EGF] on actin cytosketon, cell cycle and cell proliferation of various cell lines. Inhibitor studies demonstrate the role of EGFR in the early response to gliadin exposure, pointing to activation of the EGFR pathway. Peptide P31-43 is not similar to any EGFR ligand, but can delay inactivation of the EGFR interfering with its endocytosis. Gliadin-induced delay of EGFR endocytosis in cultured intestinal biopsies, together with S-phase entry of epithelial intestinal cells, confirm a role for EGFR activation in CD. Conclusion: The ability of gliadin peptides to delay EGFR inactivation through interference with the endocytic pathway suggests a model where gliadin fragments amplify the effects of trace amounts of EGF, and possibly of other growth factors, by prolonging receptor activation. The results, using cultures of coeliac intestinal biopsies, highlight the role of the EGF pathway in establishing and maintaining the typical atrophic and proliferative alterations of the small intestine in CD.
Background & Aims The mechanisms of tissue destruction during progression of celiac disease are poorly defined. It is not clear how tissue stress and adaptive immunity contribute to activation of intraepithelial cytotoxic T cells and development of villous atrophy. We analyzed epithelial cells and intraepithelial cytotoxic T cells in family members of patients with celiac disease, who are without any signs of adaptive anti-gluten immunity, and in potential celiac disease patients, who have antibodies against tissue transglutaminase 2 in absence of villous atrophy. Methods We collected blood and intestinal biopsies from 268 patients at tertiary medical centers in the US and Italy from 2004 to 2012. All subjects had had normal small intestinal histology. Study groups included healthy individuals with no family history of celiac disease or antibodies against tissue transglutamianse 2 (controls), healthy family members of patients with celiac disease, and potential celiac disease patients. Intraepithelial cytotoxic T cells were isolated and levels of inhibitory and activating natural killer (NK) cells were measured by flow cytometry. Levels of heat shock protein (HSP) and interleukin-15 (IL15) were measured by immunohistochemistry and ultrastructural alterations in intestinal epithelial cells (IEC) were assessed by electron microscopy. Results IEC from subjects with a family history of celiac disease, but not from subjects who already have immunity to gluten, expressed higher levels of HS27, HSP70, and IL15 than controls; their IEC also had ultrastructural alterations. Intraepithelial cytotoxic T cells from relatives of patients with celiac disease expressed higher levels of activating NK receptors than cells from controls, although at lower levels than patients with active celiac disease, and without loss of inhibitory receptors for NK cells. Intraepithelial cytotoxic T cells from potential celiac disease patients failed to upregulate activating NK receptors. Conclusions A significant subset of healthy family members of patients with celiac disease with normal intestinal architecture has epithelial alterations, detectable by immunohistochemistry and electron microscopy. The adaptive immune response to gluten appears to act in synergy with epithelial stress to allow intraepithelial cytotoxic T cells to kill epithelial cells and induce villous atrophy in patients with potential celiac disease.
Dietary gluten has been associated with an increased risk of type 1 diabetes. We have evaluated inflammation and the mucosal immune response to gliadin in the jejunum of patients with type 1 diabetes. Small intestinal biopsies from 17 children with type 1 diabetes without serological markers of celiac disease and from 50 age-matched control subjects were examined by immunohistochemistry. In addition, biopsies from 12 type 1 diabetic patients and 8 control subjects were cultured with gliadin or ovalbumin peptic-tryptic digest and examined for epithelial infiltration and lamina propria T-cell activation. The density of intraepithelial CD3 ؉ and ␥␦ ؉ cells and of lamina propria CD25 ؉ mononuclear cells was higher in jejunal biopsies from type 1 diabetic patients versus control subjects. In the patients' biopsies cultured with peptic-tryptic gliadin, there was epithelial infiltration by CD3 ؉ cells, a significant increase in lamina propria CD25 ؉ and CD80 ؉ cells and enhanced expression of lamina propria CD54 and crypt HLA-DR. No such phenomena were observed in control subjects, even those with celiac disease-associated HLA haplotypes. In conclusion, signs of mucosal inflammation were present in jejunal biopsies from type 1 diabetic patients, and organ culture studies indicate a deranged mucosal immune response to gliadin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.