The clinical and pathological differences between synucleinopathies such as Parkinson's disease and multiple system atrophy have been postulated to stem from unique strains of α-synuclein aggregates, akin to what occurs in prion diseases. Here, we demonstrate that inoculation of transgenic mice with different strains of recombinant or brain-derived α-synuclein aggregates produces clinically and pathologically distinct diseases. Strain-specific differences were observed in the signs of neurological illness, time to disease onset, morphology of cerebral α-synuclein deposits, and the conformational properties of the induced aggregates. Moreover, different strains targeted distinct cellular populations and cell types within the brain, recapitulating the selective targeting observed between human synucleinopathies. Strain-specific clinical, pathological, and biochemical differences were faithfully maintained upon serial passaging, implying that αsynuclein propagates via prion-like conformational templating. Thus, pathogenic α-synuclein exhibits key hallmarks of prion strains, providing evidence that disease heterogeneity among the synucleinopathies is caused by distinct α-synuclein strains.Parkinson's disease (PD) and related diseases, including dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), are progressive neurodegenerative disorders. The brains of PD, DLB, and MSA patients contain intracellular inclusions composed of aggregated α-synuclein (α-syn). Thus, these diseases are commonly referred to as αsynucleinopathies, or simply synucleinopathies 1 . α-Syn is a 140-amino acid cytoplasmic protein that is found within presynaptic nerve terminals and is involved in the assembly of SNARE complexes 2 . In disease, α-syn polymerizes into insoluble β-sheet-rich protein aggregates that become phosphorylated at residue Ser129 and deposit within the central nervous system 3,4 . α-Syn is believed to play a central pathogenic role in the synucleinopathies since mutation of the gene encoding α-syn causes early-onset PD 5 .There is mounting evidence that α-syn becomes "prion-like" during disease, leading to a progressive cell-to-cell spreading of protein aggregates within the brain 6 . Prions are selfpropagating protein aggregates that cause neurodegenerative disorders such as Creutzfeldt-Jakob disease in humans and scrapie in sheep. Prion replication and spreading is thought to occur via a template-directed refolding mechanism, in which aggregated prion protein (PrP) catalyzes the conformational conversion of properly-folded PrP into additional copies of the misfolded form 7 . Similar to the experimental transmission of prion disease, injection of mice with pre-formed α-syn aggregates induces the aggregation and deposition of α-syn within the brain and, in some instances, accelerates the onset of neurological illness [8][9][10][11][12][13] . The prionlike behavior of α-syn aggregates provides a potential molecular explanation for the progressive nature of PD and related synucleinopathies.The synucleinopathies ar...
In Parkinson's disease, intracellular α-synuclein (α-syn) inclusions form in neurons and are referred to as Lewy bodies. These aggregates spread through the brain following a specific pattern leading to the hypothesis that neuron-to-neuron transfer is critical for the propagation of Lewy body pathology. Here we review recent studies employing pre-formed fibrils generated from recombinant α-syn to evaluate the uptake, trafficking, and release of α-syn fibrils. We outline methods of internalization as well as cell surface receptors that have been described in the literature as regulating α-syn fibril uptake. Pharmacological and genetic studies indicate endocytosis is the primary method of α-syn internalization. Once α-syn fibrils have crossed the plasma membrane they are typically trafficked through the endo-lysosomal system with autophagy acting as the dominant method of α-syn clearance. Interestingly, both chaperone-mediated autophagy and macroautophagy have been implicated in the degradation of α-syn, although it remains unclear which system is chiefly responsible for the removal of α-syn fibrils. The major hallmark of α-syn spreading is the templating of misfolded properties onto healthy protein resulting in a conformational change; we summarize the evidence indicating misfolded α-syn can seed endogenous α-syn to form new aggregates. Finally, recent studies demonstrate that cells release misfolded and aggregated α-syn and that these processes may involve different chaperones. Nonetheless, the exact mechanism for the release of fibrillar α-syn remains unclear. This review highlights what is known, and what requires further clarification, regarding each step of α-syn transmission.
Key Points Question What is the diagnostic yield of genome sequencing in children with unexplained medical complexity and prior negative results of genetic testing? Findings In this cohort study that included 138 individuals from 49 families, genome sequencing detected all genomic variation previously identified by conventional genetic testing and resulted in a new diagnosis for 31% of patients. Meaning This study suggests that, because of its high yield, comprehensive nature, and increasingly competitive costs, genome sequencing is a potentially first-tier genetic test for children with unexplained medical complexity.
study conducted between 1990 and 2016, based on a global study of 195 countries and territories, identified Parkinson disease (PD) as the fastest growing neurological disorder when measured using death and disability. Most people affected by PD live in low-and middle-income countries (LMICs) and experience large inequalities in access to neurological care and essential medicines. This Special Communication describes 6 actions steps that are urgently needed to address global disparities in PD.OBSERVATIONS The adoption by the 73rd World Health Assembly (WHA) of resolution 73.10 to develop an intersectoral global action plan on epilepsy and other neurological disorders in consultation with member states was the stimulus to coordinate efforts and leverage momentum to advance the agenda of neurological conditions, such as PD. In April 2021, the Brain Health Unit at the World Health Organization convened a multidisciplinary, sex-balanced, international consultation workshop, which identified 6 workable avenues for action within the domains of disease burden; advocacy and awareness; prevention and risk reduction; diagnosis, treatment, and care; caregiver support; and research. CONCLUSIONS AND RELEVANCEThe dramatic increase of PD cases in many world regions and the potential costs of PD-associated treatment will need to be addressed to prevent possible health service strain. Across the board, governments, multilateral agencies, donors, public health organizations, and health care professionals constitute potential stakeholders who are urged to make this a priority.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.