Nine mutations, six of which are novel, in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31, causing adRP have been identified in the Spanish population. Their contribution to adRP is approximately 5% after correction in relation to mutations found in other genes causing adRP. The patients carrying a mutation in the pre-mRNA splicing-factor PRPF8 gene showed a type 1 diffuse RP. The existence of asymptomatic carriers of the nonsense mutation in the PRPF31 gene suggests incomplete penetrance for these mutations in the families.
Mutations in the c-KIT gene have been identified in many sporadic and familial cases of gastrointestinal stromal tumor (GIST). We report a familial case of GIST with cutaneous hyperpigmentation associated with a novel germline mutation in the c-KIT gene. Screening for mutations in exon 11 of the c-KIT gene in genomic DNA from tumors and peripheral blood of the members of a family with GISTs was undertaken by direct genomic sequencing. Tumors from GIST patients were analyzed histologically and immunohistochemically. Clinical examination of GIST patients was also performed to detect other systemic diseases associated with c-KIT mutations. Histological study showed that the tumors were GISTs expressing CD34 and c-KIT protein. This GIST-hyperpigmentation disease was associated in the family with a germline mutation in the c-KIT gene. The mutation is a duplication of the sequence CAACTT located in exon 11 of the c-KIT gene, which introduces two extra glutamine and leucine residues in the encoding protein between positions 576 and 577. This Spanish family was affected with GISTs and cutaneous hyperpigmentation associated with a novel germline mutation Leu576_Pro577insGlnLeu in the juxtamembrane domain of the c-KIT receptor. These types of mutation in the c-KIT gene activate the tyrosine kinase activity of the c-KIT receptor and induce constitutive signaling leading to GISTs, in some cases associated with cutaneous hyperpigmentation.
Retinitis pigmentosa (RP) is the most frequent form of inherited retinopathy. RP is genetically heterogeneous with autosomal dominant, autosomal recessive and X-linked forms. Autosomal dominant retinitis pigmentosa (adRP) accounts for about 20-25% of all RP cases. At least ten adRP loci have so far been mapped. However, mutations causing adRP have been identified only in four retina-specific genes: RHO (encoding rhodopsin) in approximately 20% of adRP families, peripherin/RDS (3-5% of adRP) and recently RP1 (Pierce et al., 1999, Sulivan et al., 1999) and NRL gene. Only one mutation in the NRL gene causing adRP has so far been reported (Bessant et al., 1999). Here we report a novel mutation Pro51Leu in an adRP Spanish family supporting that mutation in NRL is the cause of adRP. A second missense mutation Gly122Glu has been observed in a simplex RP patient that may represent a sporadic case of retinitis pigmentosa. Hum Mutat 17:520, 2001.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease, characterized phenotypically by mucocutaneous pigmentation and hamartomatous polyposis. Affected patients are at an increased risk of developing gastrointestinal and other malignancies. Mutations in the STK11/LKB1 (LKB1) gene, which encodes for a serine-threonine kinase, have been identified as a genetic cause of PJS. Molecular analysis of the LKB1 gene in a simplex case of PJS revealed a substitution of cytosine (C) for guanine (G) at codon 246 in exon 6, resulting in the Tyr246X mutation. The nucleotide substitution leads to a premature stop codon at the 246 residue, predicting a truncated protein and presumed loss of kinase activity. Analysis of DNA from both parents of the PJS patient did not show this mutation, which is therefore a de novo mutation. We isolated DNA from microdissected gastrointestinal hamartomatous polyps in the PJS patient and investigated the loss of heterozygosity (LOH) at the LKB1 locus by real-time fluorescence polymerase chain reaction genotyping using a fluorescent resonance energy transfer technique. The results suggest a different mechanism from LOH in the formation of hamartomatous polyps.
Background: Retinitis pigmentosa (RP), a clinically and genetically heterogeneous group of retinal degeneration disorders affecting the photoreceptor cells, is one of the leading causes of genetic blindness. Mutations in the photoreceptor-specific gene RP1 account for 3-10% of cases of autosomal dominant RP (adRP). Most of these mutations are clustered in a 500 bp region of exon 4 of RP1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.