It has long been recognized that the least-squares estimation method of fitting the best straight line to data points having normally distributed errors yields identical results for the slope and intercept of the line as does the method of maximum likelihood estimation. We show that, contrary to previous understanding, these two methods also give identical results for the standard errors in slope and intercept, provided that the least-squares estimation expressions are evaluated at the least-squares-adjusted points rather than at the observed points as has been done traditionally. This unification of standard errors holds when both x and y observations are subject to correlated errors that vary from point to point. All known correct regression solutions in the literature, including various special cases, can be derived from the original York equations. We present a compact set of equations for the slope, intercept, and newly unified standard errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.