Metabolic related diseases, such as type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD), are widespread threats which bring about a significant burden of deaths worldwide, mainly due to cardiovascular events and cancer. The pathogenesis of these diseases is extremely complex, multifactorial, and only partially understood. As the main metabolic organ, the liver is central to maintain whole body energetic homeostasis. At the cellular level, mitochondria are the metabolic hub connecting and integrating all the main biochemical, hormonal, and inflammatory signaling pathways to fulfill the energetic and biosynthetic demand of the cell. In the liver, mitochondria metabolism needs to cope with the energetic regulation of the whole body. The nuclear receptors PPARs orchestrate lipid and glucose metabolism and are involved in a variety of diseases, from metabolic disorders to cancer. In this review, focus is placed on the roles of PPARs in the regulation of liver mitochondrial metabolism in physiology and pathology, from NAFLD to HCC.
Osteoporosis is the most common metabolic bone disorder affecting up to 40% of postmenopausal women, characterized by a reduction in bone mass and strength leading to bone fragility and fractures. Despite the available tools for diagnosis and stratification of a fracture risk, bone loss occurs insidiously and osteoporosis is often diagnosed after the first fracture has occurred, with important health-related outcomes. Therefore, the need of markers that could efficiently diagnose bone fragility and osteoporosis is still necessary. Over the past few years, novel studies have focused on miRNAs, small noncoding RNAs that are differentially expressed in many pathological conditions, making them attractive biomarkers. To date, the role of miRNAs in bone disorders remains in great part unclear. In particular, limited and partly conflicting information is available concerning their use as potential biomarkers for osteoporosis, due to differences in patient selection, type of samples, and analytical methods. Despite these limits, concordant information about some specific miRNAs is now arising, making likely their use as additional tools to stratify the risk of osteoporosis and possibly fractures. In this review, we summarize the most relevant studies concerning circulating miRNAs differentially expressed in osteoporotic patients along with their function in bone cells and bone turnover.
Studies over the past two decades have led to major advances in the pathogenesis of Paget’s disease of bone (PDB) and particularly on the role of genetic factors. Germline mutations of different genes have been identified, as a possible cause of this disorder, and most of the underlying pathways are implicated in the regulation of osteoclast differentiation and function, whereas other are involved in cell autophagy mechanisms. In particular, about 30 different germline mutations of the Sequestosome 1 gene (SQSTM1) have been described in a significant proportion of familial and sporadic PDB cases. The majority of SQSTM1 mutations affect the ubiquitin-binding domain of the protein and are associated to a more severe clinical expression of the disease. Also, germline mutations in the ZNF687 and PFN1 genes have been associated to severe, early onset, polyostotic PDB with increased susceptibly to neoplastic degeneration, particularly giant cell tumor. Mutations in the VCP (Valosin Containing Protein) gene cause the autosomal dominant syndrome “Inclusion Body Myopathy, PDB, Fronto-temporal Dementia,” characterized by pagetic manifestations, associated with myopathy, amyotrophic lateral sclerosis and fronto-temporal dementia. Moreover, germline mutations in the TNFRSF11A gene, which encodes for RANK, were associated with rare syndromes showing some histopathological, radiological, and clinical overlap with PDB and in two cases of early onset PDB-like disease. Likewise, genome wide association studies performed in unrelated PDB cases identified other potential predisposition genes and/or susceptibility loci. Thus, it is likely that polygenic factors are involved in the PDB pathogenesis in many individuals and that modifying genes may contribute in refining the clinical phenotype. Moreover, the contribution of somatic mutations of SQSTM1 gene and/or epigenetic mechanisms in the pathogenesis of skeletal pagetic abnormalities and eventually neoplastic degeneration, cannot be excluded. Indeed, clinical and experimental observations indicate that genetic susceptibility might not be a sufficient condition for the clinical development of PDB without the concomitant intervention of viral infection, in primis paramixoviruses, and/or other environmental factors (e.g., pesticides, heavy metals or tobacco exposure), at least in a subset of cases. This review summarizes the most important advances that have been made in the field of cellular and molecular biology PDB over the past decades.
RuvBL1 is an AAA+ ATPase whose expression in hepatocellular carcinoma (HCC) correlates with a poor prognosis. In vitro models suggest that targeting RuvBL1 could be an effective strategy against HCC. However, the role of RuvBL1 in the onset and progression of HCC remains unknown. To address this question, we developed a RuvBL1 hep+/− mouse model and evaluated the outcome of DEN-induced liver carcinogenesis up to 12 months of progression. We found that RuvBL1 haploinsufficiency initially delayed the onset of liver cancer, due to a reduced hepatocyte turnover in RuvBL1 hep+/− mice. However, RuvBL1 hep+/− mice eventually developed HCC nodules that, with aging, grew larger than in the control mice. Moreover, RuvBL1 hep+/− mice developed hepatic insulin resistance and impaired glucose homeostasis. We could determine that RuvBL1 regulates insulin signaling through the Akt/mTOR pathway in liver physiology in vivo as well as in normal hepatocytic and HCC cells in vitro. Whole transcriptome analysis of mice livers confirmed the major role of RuvBL1 in the regulation of hepatic glucose metabolism. Finally, RuvBL1 expression was found significantly correlated to glucose metabolism and mTOR signaling by bioinformatic analysis of human HCC sample from the publicly available TGCA database. These data uncover a role of RuvBL1 at the intersection of liver metabolism, hepatocyte proliferation and HCC development, providing a molecular rationale for its overexpression in liver cancer.M.M. and F.Z. contributed equally to this work Additional Supporting Information may be found in the online version of this article.
Helicobacter pylori (HP) infection is a common and persistent disorder acting as a major cofactor for the development of upper gastrointestinal diseases and several extraintestinal disorders including osteoporosis. However, no prospective study assessed the effects of HP on bone health and fracture risk. We performed a HP screening in a population‐based cohort of 1149 adults followed prospectively for up to 11 years. The presence of HP infection was assessed by serologic testing for serum antibodies to HP and the cytotoxin associated gene‐A (CagA). The prevalence of HP infection did not differ among individuals with normal bone mineral density (BMD), osteoporosis, and osteopenia. However, HP infection by CagA‐positive strains was significantly increased in osteoporotic (30%) and osteopenic (26%) patients respect to subjects with normal BMD (21%). Moreover, anti‐CagA antibody levels were significantly and negatively associated with lumbar and femoral BMD. Consistent with these associations, patients affected by CagA‐positive strains had a more than fivefold increased risk to sustain a clinical vertebral fracture (HR 5.27; 95% CI, 2.23–12.63; p < .0001) and a double risk to sustain a nonvertebral incident fracture (HR 2.09; 95% CI, 1.27–2.46; p < .005). Reduced estrogen and ghrelin levels, together with an impaired bone turnover balance after the meal were also observed in carriers of CagA‐positive HP infection. HP infection by strains expressing CagA may be considered a risk factor for osteoporosis and fractures. Further studies are required to clarify in more detail the underlying pathogenetic mechanisms of this association. © 2020 American Society for Bone and Mineral Research (ASBMR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.