Microglia undergo a process of activation in pathology which is controlled by many factors including neurotransmitters. We found that a subpopulation (11 %) of freshly isolated adult microglia respond to the muscarinic acetylcholine receptor agonist carbachol with a Ca(2+) increase and a subpopulation of similar size (16 %) was observed by FACS analysis using an antibody against the M3 receptor subtype. The carbachol-sensitive population increased in microglia/brain macrophages isolated from tissue of mouse models for stroke (60 %) and Alzheimer's disease (25 %), but not for glioma and multiple sclerosis. Microglia cultured from adult and neonatal brain contained a carbachol-sensitive subpopulation (8 and 9 %), which was increased by treatment with interferon-γ to around 60 %. This increase was sensitive to blockers of protein synthesis and correlated with an upregulation of the M3 receptor subtype and with an increased expression of MHC-I and MHC-II. Carbachol was a chemoattractant for microglia and decreased their phagocytic activity.
Health and disease are strongly linked to psychophysiological states. While stress research strongly benefits from standardized stressors, no established protocol focuses on the induction of psychophysiological relaxation. To maintain health, functioning regenerative systems are however likely as important as functioning stress systems. Thus, the identification of validated relaxation paradigms is needed. Here, we investigated whether standardized massages are capable of reliably inducing physiological and psychological states of relaxation. Relaxation was indicated by changes in high frequency heart rate variability (HF-HRV), a vagally-mediated heart rate variability component, and repeated ratings of subjective relaxation, and stress levels. Sixty healthy women were randomly assigned to a vagus nerve massage (n = 19), a soft shoulder massage (n = 22), or a resting control group (n = 19). During the intervention, HF-HRV and subjective relaxation increased, while subjective stress decreased significantly in all groups. Both massage interventions elicited significantly higher HF-HRV compared to the control group. Accordingly, both massage protocols increased psychophysiological relaxation, and may serve as useful tools in future research. However, future work will have to determine which of several protocols might be used as a gold standard to induce a psychophysiological state of relaxation in the laboratory.
Background and Purpose Gamma oscillations are fast rhythmic fluctuations of neuronal network activity ranging from 30 to 90 Hz that establish a precise temporal background for cognitive processes such as perception, sensory processing, learning, and memory. Alterations of gamma oscillations have been observed in schizophrenia and are suggested to play crucial roles in the generation of positive, negative, and cognitive symptoms of the disease. Experimental Approach In this study, we investigated the effects of the novel antipsychotic cariprazine, a D3‐preferring dopamine D3/D2 receptor partial agonist, on cholinergically induced gamma oscillations in rat hippocampal slices from treatment‐naïve and MK‐801‐treated rats, a model of acute first‐episode schizophrenia. Key Results The D3 receptor‐preferring agonist pramipexole effectively decreased the power of gamma oscillations, while the D3 receptor antagonist SB‐277011 had no effect. In treatment‐naïve animals, cariprazine did not modulate strong gamma oscillations but slightly improved the periodicity of non‐saturated gamma activity. Cariprazine showed a clear partial agonistic profile at D3 receptors at the network level by potentiating the inhibitory effects when the D3 receptor tone was low and antagonizing the effects when the tone was high. In hippocampal slices of MK‐801‐treated rats, cariprazine allowed stabilization of the aberrant increase in gamma oscillation power and potentiated resynchronization of the oscillations. Conclusion and Implications Data from this study indicate that cariprazine stabilizes pathological hippocampal gamma oscillations, presumably by its partial agonistic profile. The results demonstrate in vitro gamma oscillations as predictive biomarkers to study the effects of antipsychotics preclinically at the network level.
Stress is one of the foremost contributors to the development of psychiatric diseases. Since the prevalence of stress-related complaints is increasing, we are in need for affordable and effective treatment alternatives. Laughter yoga (LY), a popular method encouraging participants to simulate laughter and participate in yogic breathing exercises, is hypothesized to buffer negative effects of stress. Although widely practiced, empirical evidence for beneficial effects of LY is scarce. We investigated the acute effects of a single 30-min LY session on the autonomic, endocrine and psychological response to a standardized psychosocial stressor. Thirty-five healthy subjects (51% female) were randomly assigned to experience either a LY (n ¼ 11), a relaxation breathing (n ¼ 12) or a (non-intervention) control (n ¼ 12) session prior to their exposure to the Trier Social Stress Test for Groups (TSST-G). Salivary cortisol, salivary alpha amylase, and subjective stress were assessed repeatedly throughout the experiment. We expected that LY and relaxation breathing group each show a downregulation of stress response indices compared to the control group. Further, we expected that LY has beneficial effects compared to relaxation breathing. The groups did not differ in salivary cortisol, alpha amylase or subjective stress reactivity during the 30-min intervention. However, in response to the TSST-G, the LY, but neither the relaxation breathing, nor the control condition, showed an attenuated cortisol stress response. These findings highlight the potential of LY to buffer the endocrine stress response. Therefore, LY could be used as a cheap and easily-to-implement add-on to more traditional stress interventions.
Background Research suggests that physical activity (PA) enhances cognitive performance and prevents stress-related impairments of higher order cognitive functions like working memory (WM) performance. The aim of the current study was to investigate the effect of PA on WM performance after acute stress exposure in preadolescent children. Methods Regular PA was assessed for seven consecutive days during a typical school week using accelerometers in a sample of 44 preadolescent children (14 girls, M age = 11.29 years, SD age = 0.67). Following this period, participants performed an automated operational span (OSPAN) task immediately after being exposed to the Trier Social Stress Test for Children (TSST-C). Results Children exhibited prototypical response slopes in salivary cortisol and salivary α-amylase as markers of the endocrine and autonomic stress response immediately after psychosocial stress induction. A subsequent two-way ANOVA comparing high- and low-stress responders revealed a significant interaction between group affiliation and PA level on WM performance for both stress markers. Interestingly, best WM performance was demonstrated in children showing both high PA levels and high cortisol (or low α-amylase, respectively) stress responses. Conclusions Though patterns differed for salivary cortisol and salivary α-amylase, overall findings suggest that PA buffers the negative effects of stress on cognitive performance in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.