Simple iron salts such as FeCl(n), Fe(acac)(n) (n = 2,3) or the salen complex 4 turned out to be highly efficient, cheap, toxicologically benign, and environmentally friendly precatalysts for a host of cross-coupling reactions of alkyl or aryl Grignard reagents, zincates, or organomanganese species with aryl and heteroaryl chlorides, triflates, and even tosylates. An "inorganic Grignard reagent" of the formal composition [Fe(MgX)(2)] prepared in situ likely constitutes the propagating species responsible for the catalytic turnover, which occurs in many cases at an unprecedented rate even at or below room temperature. Because of the exceptionally mild reaction conditions, a series of functional groups such as esters, ethers, nitriles, sulfonates, sulfonamides, thioethers, acetals, alkynes, and -CF(3) groups are compatible. The method also allows for consecutive cross-coupling processes in one pot, as exemplified by the efficient preparation of compound 12, and has been applied to the first synthesis of the cytotoxic marine natural product montipyridine 8. In contrast to the clean reaction of (hetero)aryl chlorides, the corresponding bromides and iodides are prone to a reduction of their C-X bonds in the presence of the iron catalyst.
1-en-6-ynes react with alcohols or water in the presence of PtCl2 as catalyst to give carbocycles with alkoxy or hydroxy functional groups at the side chain. The reaction proceeds by anti attack of the alkene onto the (eta2-alkyne)platinum complex. The formation of the C-C and C-O bonds takes place stereoselectively by trans addition of the electrophile derived from the alkyne and the nucleophile to the double bond of the enyne. Formation of five- or six-membered carbo- or heterocycles could be obtained from 1-en-6-ynes depending on the substituents on the alkene or at the tether. Although more limited in scope, Ru(II) and Au(III) chlorides also give rise to alkoxy- or hydroxycyclization of enynes. On the basis of density functional theory (DFT) calculations, a cyclopropyl platinacarbene complex was found as the key intermediate in the process. In the presence of polar, nonnucleophilic solvents, 1-en-6-ynes are cycloisomerized with PtCl2 as catalyst. Formation of a platinacyclopentene intermediate is supported by DFT calculations. The reaction takes place by selective hydrogen abstraction of the trans-allylic substituent. Cycloisomerization of enynes containing disubstituted alkenes could be carried out using RuCl3 or Ru(AsPh3)4Cl2 in MeOH.
Different mechanisms have been proposed for the cyclization of enynes catalyzed by electrophilic metal halides or complexes. We present evidence to indicate that the previously reported “carbohydroxypalladation” and the “hydroxycyclization catalyzed by PtII” are closely related reactions. Thus, palladium complexes formed in situ from PdCl2 and trisulfonated phosphane TPPTS or cyclic phosphite P(OCH2)3CEt as the ligands catalyze the methoxy- or hydroxycyclization of enynes with selectivities similar to those observed with PtII complexes. Deuteration studies indicate that activation of the alkyne by PdII promotes an anti-addition of the alkene
The palladium-catalyzed intramolecular coupling of allyl stannanes with allyl carboxylates provides a general synthesis of five-and six-membered-ring carbocycles. The intramolecular coupling leads selectively to trans five-membered carbocycles and cis sixmembered carbocycles, regardless of the cis or trans configuration of the allylic functions in the starting material. For example, the stereoselective synthesis of 10-epi-elemol demonstrated the cis configuration of the six-membered carbocycles. The related Oppolzer cyclization leads to lower yields, or fails completely, with substrates substituted at C-3 of the allyl and/or alkene terminus. The palla-dium-catalyzed intramolecular coupling of allyl silanes with allyl trifluoroacetates allows the synthesis of trans fivemembered-ring carbocycles and requires the use of a bicyclic phosphite as the ligand. DFT calculations suggest that the preferred pathway for the intramolecular allyl/allyl coupling is by formation of the CÀC bond between the C-3 termini of the allyl ligands of bis(h 3allyl)palladium complexes.
Reliable chirality transfer is one of the major advantages of a novel synthesis of 2,3-allenols from propargyl epoxides (see scheme) catalyzed by inexpensive and environmentally benign iron salts. The reactions proceed very rapidly in excellent yields and with moderate to good diastereoselectivity in favor of the syn-configured product
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.