The first detailed study of the palladium-catalyzed amination of aryl nonaflates is reported. Use of ligands 2-4 and 6 allows for the catalytic amination of electron-rich and -neutral aryl nonaflates with both primary and secondary amines. With use of Xantphos 5, the catalytic amination of a variety of functionalized aryl nonaflates resulted in excellent yields of anilines; even 2-carboxymethyl aryl nonaflate is effectively coupled with a primary alkylamine. Moderate yields were obtained when coupling halo-aryl nonaflates with a variety of amines, where in most cases the aryl nonaflate reacted in preference to the aryl halide. Overall, aryl nonaflates are an effective alternative to triflates in palladium-catalyzed C-N bond-forming processes due to their increased stability under the reaction conditions.
A multitechnique investigation on the self-assembly behavior of a biocompatible polymer in the high dilution regime is reported herein. The obtained results unambiguously reveal the existence of premicellar structures that may further extend the efficiency of traditional polymeric micelles as drug-delivery vehicles. Such an expansion in the excipient capacity arises from (i) the increased drug retention of submicellar assemblies due to their higher resistance to dilution and therefore to their improved circulation time and (ii) the superior carrier permeability of these premicellar aggregates as a result of their smaller size, which makes these drug vehicles more effectively targeted to the tumors through the so-called enhanced permeability and retention effect. The uptake ability of the polymeric premicelles described in this work has been tested through the use of Nile Red as drug model given its intermediate lipophilicity (log P ≈ 3-5) similar to that of potent chemotherapy agents and its microenvironment-sensitive fluorescence properties relevant for localization purposes. Thus, it has been found that an efficient drug encapsulation can be achieved under conditions well below the normally required critical micelle concentration. These results may constitute a promising strategy in order to develop new and more efficient polymeric formulations in drug delivery technology.
Replacing the counterion in sodium bis(2-ethylhexyl)sulfosuccinate with H(+) allows strongly acidic microemulsions to be obtained. These systems are the only known colloidal medium in which it is possible to reach local concentrations of acid, expressed as Hammett acidity function (H(0)), lower than H(0) = -0.2, which corresponds to a concentration of acid above 1 M in aqueous solution. In the present work, there has been analyzed the influence of this type of microemulsion on the acid hydrolysis of two esters derived from picolinic acid: 4-nitrophenylpicolinate (NPP) and 2,4-dinitrophenylpicolinate (DNPP). The reaction rate for NPP and DNPP increases up to 16 times on increasing the size of the aqueous nanocore of the microemulsion, which supposes an experimental behavior opposed to the one observed for the hydrolysis of nitrophenylacetate (NPA). The key to this differentiated behavior of NPP and DNPP resides in the fact that the rate-determining step for the acid hydrolysis mechanism is the water addition to the protonated ester. The reaction rate increases on increasing the nucleophilicity of water; that is, on increasing W (W = [H(2)O]/[surfactant]). Therefore, the acid hydrolysis of esters in strongly acidic microemulsions presents an A2 mechanism when reactivity increases with W, and an A1 mechanism if it decreases with W.
A study on the effect of sodium bis(2‐ethylhexyl)sulfosuccinate‐based metallomicroemulsions on the Lewis acid‐catalyzed hydrolysis of the ester 2,4‐dinitrophenylpicolinate is reported. For a given amount of metal (Ni2+), the presence of these colloidal systems increases the catalytic efficiency of the Lewis acid approximately 1000 % over that found in bulk water. This finding is justified on the basis of the highly localized confinement of the catalyst at the aqueous interface of the microemulsion. In addition, the obtained results indicate that the encounter of the ester with the metal catalyst is significantly favored in the presence of this metallo‐functionalized microreactor. The mathematical model developed herein also allows an accurate determination and prediction of the influence of the metallomicroemulsion composition on the catalytic effect on the reaction rate. The results obtained lead to the development of similar reaction systems involving the application of metal Lewis acid catalysts such as carbon–carbon bond‐forming reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.