Both the secretion and the cell surface display of Bacillus subtilis lipase A (Lip A) in Saccharomyces cerevisiae was investigated using different domains of the cell wall protein Pir4 as translational fusion partners. LipA gene minus its leader peptide was fused inframe in two places of PIR4 to achieve cell wall targeting, or substituting most of the PIR4 sequence, after the signal peptide and the Kex2 processed subunit I of Pir4 to achieve secretion to the growth medium. Expression of the recombinant fusion proteins was investigated in a standard and a glycosylation-deficient strain of S. cerevisiae, grown in selective or rich medium. Fusion proteins intended to be retained at the cell wall were secreted to the growth medium, most likely as result of the degradation of the Pir4 moiety containing the cell wall retention domain, giving low levels of lipase activity. However, the fusion intended for secretion was efficiently secreted in a percentage of close to 90% and remained stable even in rich medium at high cell density cultures, yielding values of over 400 IU of lipase activity per milliliter of cell supernatant. This is, to our knowledge, the first report of the efficient production, as a secreted protein, of lipase A of B. subtilis in baker's yeast.
The endoglucanase coded by celA (GenBank Access No. Y12512) from Paenibacillus barcinonensis, an enzyme with good characteristics for application on paper manufacture from agricultural fibers, was expressed in Saccharomyces cerevisiae by using different domains of the cell wall protein Pir4 as translational fusion partners, to achieve either secretion or cell wall retention of the recombinant enzyme. Given the presence of five potential N-glycosylation sites in the amino acid sequence coded by celA, the effect of glycosylation on the enzymatic activity of the recombinant enzyme was investigated by expressing the recombinant fusion proteins in both, standard and glycosylation-deficient strains of S. cerevisiae. Correct targeting of the recombinant fusion proteins was confirmed by Western immunoblot using Pir-specific antibodies, while enzymatic activity on carboxymethyl cellulose was demonstrated on plate assays, zymographic analysis and colorimetric assays. Hyperglycosylation of the enzyme when expressed in the standard strain of S. cerevisiae did not affect activity, and values of 1.2 U/ml were obtained in growth medium supernatants in ordinary batch cultures after 24 h. These values compare quite favorably with those described for other recombinant endoglucanases expressed in S. cerevisiae. This is one of the few reports describing the expression of Bacillus cellulases in S. cerevisiae, since yeast expressed recombinant cellulases have been mostly of fungal origin. It is also the first report of the yeast expression of this particular endoglucanase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.