The properties of quantum systems interacting with their environment, commonly called open quantum systems, can be affected strongly by this interaction. Although this can lead to unwanted consequences, such as causing decoherence in qubits used for quantum computation, it can also be exploited as a probe of the environment. For example, magnetic resonance imaging is based on the dependence of the spin relaxation times of protons in water molecules in a host's tissue. Here we show that the excitation energy of a single spin, which is determined by magnetocrystalline anisotropy and controls its stability and suitability for use in magnetic data-storage devices, can be modified by varying the exchange coupling of the spin to a nearby conductive electrode. Using scanning tunnelling microscopy and spectroscopy, we observe variations up to a factor of two of the spin excitation energies of individual atoms as the strength of the spin's coupling to the surrounding electronic bath changes. These observations, combined with calculations, show that exchange coupling can strongly modify the magnetic anisotropy. This system is thus one of the few open quantum systems in which the energy levels, and not just the excited-state lifetimes, can be renormalized controllably. Furthermore, we demonstrate that the magnetocrystalline anisotropy, a property normally determined by the local structure around a spin, can be tuned electronically. These effects may play a significant role in the development of spintronic devices in which an individual magnetic atom or molecule is coupled to conducting leads.
The converse piezoelectric effect is a phenomenon in which mechanical strain is generated in a material due to an applied electrical field. In this work, we demonstrate the converse piezoelectric effect in single heptahelicene-derived molecules on the Ag(111) surface using atomic force microscopy (AFM) and total energy density functional theory (DFT) calculations. The force-distance spectroscopy acquired over a wide range of bias voltages reveals a linear shift of the tip-sample distance at which the contact between the molecule and tip apex is established. We demonstrate that this effect is caused by the bias-induced deformation of the spring-like scaffold of the helical polyaromatic molecules. We attribute this effect to coupling of a soft vibrational mode of the molecular helix with a vertical electric dipole induced by molecule-substrate charge transfer. In addition, we also performed the same spectroscopic measurements on a more rigid o-carborane dithiol molecule on the Ag(111) surface. In this case, we identify a weaker linear electromechanical response, which underpins the importance of the helical scaffold on the observed piezoelectric response.
Using a combination of scanning tunneling spectroscopy and atomic lateral manipulation, we obtained a systematic variation of the Kondo temperature (TK) of Co atoms on Ag(111) as a function of the surface state contribution to the total density of states at the atom adsorption site (ρs). By sampling the TK of a Co atom on positions where ρs was spatially resolved beforehand, we obtain a nearly linear relationship between both magnitudes. We interpret the data on the basis of an Anderson model including orbital and spin degrees of freedom (SU(4)) in good agreement with the experimental findings. The fact that the onset of the surface band is near the Fermi level is crucial to lead to the observed linear behavior. In the light of this model, the quantitative analysis of the experimental data evidences that at least a quarter of the coupling of Co impurities with extended states takes place through the hybridization to surface states. This result is of fundamental relevance in the understanding of Kondo screening of magnetic impurities on noble metal surfaces, where bulk and surface electronic states coexist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.