Alcohol binge drinking is on the increase in the young adult population, and consumption during pregnancy can be deleterious for foetal development. Maternal alcohol consumption leads to a wide range of long-lasting morphological and behavioural deficiencies known as foetal alcohol spectrum disorders (FASD), associated with neurodevelopmental disabilities. We sought to test the effects of alcohol on neuroimmune system activation and its potential relation to alcohol-induced neurodevelopmental and persistent neurobehavioural effects in offspring after maternal alcohol binge drinking during the prenatal period or in combination with lactation. Pregnant C57BL/6 female mice underwent a procedure for alcohol binge drinking either during gestation or both the gestation and lactation periods. Adult male offspring were assessed for cognitive functions and motor coordination. Early alcohol exposure induced motor coordination impairments in the rotarod test. Object recognition memory was not affected by maternal alcohol binge drinking, but Y-maze performance was impaired in pre- and early postnatal alcohol-exposed mice. Behavioural effects were associated with an upregulation of pro-inflammatory signalling (Toll-like receptor 4, nuclear factor-kappa B p65, NOD-like receptor protein 3, caspase-1, and interleukin-1β), gliosis, neuronal cell death and a reduction in several structural myelin proteins (myelin-associated glycoprotein, myelin basic protein, myelin proteolipid protein and myelin regulatory factor) in both the prefrontal cortex and hippocampus of adult mice exposed to alcohol. Altogether, our results reveal that maternal binge-like alcohol consumption induces neuroinflammation and myelin damage in the brains of offspring and that such effects may underlie the persistent cognitive and behavioural impairments observed in FASD.
A bispecific antibody (bsAb) is able to bind two different targets or two distinct epitopes on the same target. Broadly speaking, bsAbs can include any single molecule entity containing dual specificities with at least one being antigen-binding antibody domain. Besides additive effect or synergistic effect, the most fascinating applications of bsAbs are to enable novel and often therapeutically important concepts otherwise impossible by using monoclonal antibodies alone or their combination. This so-called obligate bsAbs could open up completely new avenue for developing novel therapeutics. With evolving understanding of structural architecture of various natural or engineered antigen-binding immunoglobulin domains and the connection of different domains of an immunoglobulin molecule, and with greatly improved understanding of molecular mechanisms of many biological processes, the landscape of therapeutic bsAbs has significantly changed in recent years. As of September 2019, over 110 bsAbs are under active clinical development, and near 180 in preclinical development. In this review article, we introduce a system that classifies bsAb formats into 30 categories based on their antigen-binding domains and the presence or absence of Fc domain. We further review the biology applications of approximately 290 bsAbs currently in preclinical and clinical development, with the attempt to illustrate the principle of selecting a bispecific format to meet biology needs and selecting a bispecific molecule as a clinical development candidate by 6 critical criteria. Given the novel mechanisms of many bsAbs, the potential unknown safety risk and risk/benefit should be evaluated carefully during preclinical and clinical development stages. Nevertheless we are optimistic that next decade will witness clinical success of bsAbs or multispecific antibodies employing some novel mechanisms of action and deliver the promise as next wave of antibody-based therapeutics.
Adverse early-life conditions induce persistent disturbances that give rise to negative emotional states. Therefore, early life stress confers increased vulnerability to substance use disorders, mainly during adolescence as the brain is still developing. In this study, we investigated the consequences of maternal separation, a model of maternal neglect, on the psychotropic effects of cocaine and the neuroplasticity of the dopaminergic system. Our results show that mice exposed to maternal separation displayed attenuated behavioural sensitization, while no changes were found in the rewarding effects of cocaine in the conditioned place preference paradigm and in the reinforcing effects of cocaine in the self-administration paradigm. The evaluation of neuroplasticity in the striatal dopaminergic pathways revealed that mice exposed to maternal separation exhibited decreased protein expression levels of D2 receptors and increased levels of the transcriptional factor Nurr1. Furthermore, animals exposed to maternal separation and treated with cocaine exhibited increased DA turnover and protein expression levels of DAT and D2R, while decreased Nurr1 and Pitx3 protein expression levels were observed when compared with saline-treated mice. Taken together, our data demonstrate that maternal separation caused an impairment of cocaine-induced behavioural sensitization possibly due to a dysfunction of the dopaminergic system, a dysfunction that has been proposed as a factor of vulnerability for developing substance use disorders.
Ethanol and 3, 4-Methylenedioxymethamphetamine (MDMA) are popular recreational drugs widely abused by adolescents that may induce neurotoxic processes associated with behavioural alterations. Adolescent CD1 mice were subjected to ethanol intake using the drinking in the dark (DID) procedure, acute MDMA or a combination. Considering that both drugs of abuse cause oxidative stress in the brain, protein oxidative damage in different brain areas was analysed 72 h after treatment using a proteomic approach. Damage to specific proteins in treated animals was significant in the hippocampus but not in the prefrontal cortex. The damaged hippocampus proteins were then identified by mass spectrometry, revealing their involvement in energy metabolism, structural function, axonal outgrowth and stability, and neurotransmitter release. Mice treated with MDMA displayed higher oxidative damage than ethanol-treated mice. To determine whether this oxidative damage was affecting hippocampus activity, declarative memory was evaluated at 72 h after treatment using the object recognition assay and the radial arm maze. Although acquisition in the radial arm maze was not impaired by ethanol intake, MDMA treatment impaired longterm memory in both tests. Therefore, oxidative damage to specific proteins observed under MDMA treatment affects important cellular function on the hippocampus that may contribute to declarative memory deficits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.