Telomeres are special DNA-protein structures that are located at the ends of linear eukaryotic chromosomes. The telomere length determines the proliferation potential of cells. Telomerase is a key component of the telomere length maintenance system. While telomerase is inactive in the majority of somatic cells, its activity determines the clonogenic potential of stem cells as a resource for tissue and organism regeneration. Reactivation of telomerase occurs during the process of immortalization in the majority of cancer cells. Telomerase is a ribonucleoprotein that contains telomerase reverse transcriptase and telomerase RNA components. The RNA processing mechanism of telomerase involves exosome trimming or degradation of the primary precursor. Recent data provide evidence that the competition between the processing and decay of telomerase RNA may regulate the amount of RNA at the physiological level. We show that termination of human telomerase RNA transcription is dependent on its promoter, which engages with the multisubunit complex Integrator to interact with RNA polymerase II and terminate transcription of the human telomerase RNA gene followed by further processing.
Telomerase RNA has long been considered to be a noncoding component of telomerase. However, the expression of the telomerase RNA gene is not always associated with telomerase activity. The existence of distinct TERC gene expression products possessing different functions were demonstrated recently. During biogenesis, hTR is processed by distinct pathways and localized in different cell compartments, depending on whether it functions as a telomerase complex component or facilitates antistress activities as a noncoding RNA, in which case it is either processed in the mitochondria or translated. In order to identify the factors responsible for the appearance and localization of the exact isoform of hTR, we investigated the roles of the factors regulating transcription DSIF (Spt5) and NELF-E; exosome-attracting factors ZCCHC7, ZCCHC8, and ZFC3H1; ARS2, which attracts processing and transport factors; and transport factor PHAX during the biogenesis of hTR. The data obtained revealed that ZFC3H1 participates in hTR biogenesis via pathways related to the polyadenylated RNA degradation mechanism. The data revealed essential differences that are important for understanding hTR biogenesis and that are interesting for further investigations of new, therapeutically significant targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.