Assisted reproductive technology is helping humans by addressing infertility using different medical procedures that help in a successful pregnancy. In vitro fertilization (IVF) is one of those assisted reproduction methods in which the sperm and eggs are combined outside the human body in a specialized environment and kept for growth. Assisted reproductive technology is helping humans by addressing infertility using different medical procedures that help in a successful pregnancy. The morphology of the embryological components is highly related to the success of the assisted reproduction procedure. In approximately 3–5 days, the embryo transforms into the blastocyst. To prevent the multiple-birth risk and to increase the chance of pregnancy the embryologist manually analyzes the blastocyst components and selects valuable embryos to transfer to the women’s uterus. The manual microscopic analysis of blastocyst components, such as trophectoderm, zona pellucida, blastocoel,and inner cell mass, is time-consuming and requires keen expertise to select a viable embryo. Artificial intelligence is easing medical procedures by the successful implementation of deep learning algorithms that mimic the medical doctor’s knowledge to provide a better diagnostic procedure that helps in reducing the diagnostic burden. The deep learning-based automatic detection of these blastocyst components can help to analyze the morphological properties to select viable embryos. This research presents a deep learning-based embryo component segmentation network (ECS-Net) that accurately detects trophectoderm, zona pellucida, blastocoel, and inner cell mass for embryological analysis. The proposed method (ECS-Net) is based on a shallow deep segmentation network that uses two separate streams produced by a base convolutional block and a depth-wise separable convolutional block. Both streams are densely concatenated in combination with two dense skip paths to produce powerful features before and after upsampling. The proposed ECS-Net is evaluated on a publicly available microscopic blastocyst image dataset, the experimental segmentation results confirm the efficacy of the proposed method. The proposed ECS-Net is providing a mean Jaccard Index (Mean JI) of 85.93% for embryological analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.