Objectives: New molecular tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being rapidly launched in response to the coronavirus disease 2019 (COVID-19) pandemic. The aim of this study was to evaluate the analytical and clinical performance of the VIASURE SARS-CoV-2 S gene RT-PCR Kit on the BD Max™ system and to compare results with those obtained with the cobas® SARS-CoV-2 test on the cobas® 6800 system. Methods: For testing the analytical performance, reference material was used. Clinical samples (n ¼ 101) obtained from individuals with symptoms compatible with COVID-19 were studied. Oropharyngeal and nasopharyngeal swabs were collected by using either ESwab™ or UTM™ collection systems. Results: When the analytical performance was evaluated, the sample containing the lowest SARS-CoV-2 concentration tested negative with the VIASURE test whereas results obtained with the cobas® test were found to be concordant with the results expected. Six out of the 101 clinical samples (5.9%) showed an inhibition with the VIASURE test. When analysing the remaining 95 clinical samples, 27 were found to be negative with both assays. Of 68 samples that were positive with the cobas® test, the VIASURE test missed 21 (30.9 %) samples. All of those 21 samples had shown Ct values 31 with the cobas® 6800 system. None of the samples tested positive with the VIASURE test and negative with the cobas® test. Conclusions: The VIASURE test was impaired by a lack of sensitivity and a relatively high number of invalid results. When using the VIASURE test for routine testing, a significant number of COVID-19positive samples would have been missed.
Tubulointerstitial fibrosis is a major feature associated with declining kidney function in chronic kidney disease of diverse etiology. No effective means as yet exists to prevent the progression of fibrosis. We have shown that the transcription factor sterol-regulatory element-binding protein 1 (SREBP-1) is an important mediator of the profibrotic response to transforming growth factor-β (TGF-β) and angiotensin II, both key cytokines in the fibrotic process. Here, we examined the role of SREBP in renal interstitial fibrosis in the unilateral ureteral obstruction (UUO) model. The two isoforms of SREBP (-1 and -2) were activated by 3 days after UUO, with SREBP-1 showing a more sustained activation to 21 days. We then examined whether SREBP1/2 inhibition with the small-molecule inhibitor fatostatin could attenuate fibrosis after 14 days of UUO. SREBP activation was confirmed to be inhibited by fatostatin. Treatment decreased interstitial fibrosis, TGF-β signaling, and upregulation of α-smooth muscle actin (SMA), a marker of fibroblast activation. Fatostatin also attenuated inflammatory cell infiltrate and apoptosis. Associated with this, fatostatin preserved proximal tubular mass. The significant increase in atubular glomeruli observed after UUO, known to correlate with irreversible renal functional decline, was also decreased by treatment. In cultured primary fibroblasts, TGF-β1 induced the activation of SREBP-1 and -2. Fatostatin blocked TGF-β1-induced α-SMA and matrix protein upregulation. The inhibition of SREBP is thus a potential novel therapeutic target in the treatment of fibrosis in chronic kidney disease.
Objectives Accurate detection of SARS-CoV-2 RNA is essential to stopping the spread of SARS-CoV-2. The aim of this study was to evaluate the performance of the recently introduced MassARRAY® SARS-CoV-2 Panel and to compare it to the cobas® SARS-CoV-2 Test. Methods The MassARRAY® SARS-CoV-2 Panel consists of five assays targeting different sequences of the SARS-CoV-2 genome. Accuracy was determined using national and international proficiency panels including 27 samples. For clinical evaluation, 101 residual clinical samples were analyzed and results compared. Samples had been tested for SARS-CoV-2 RNA with the cobas® SARS-CoV-2 Test. Results When accuracy was tested with the MassARRAY® SARS-CoV-2 Panel, 25 of 27 (92.6%) samples revealed correct results. When clinical samples were analyzed with the MassARRAY® SARS-CoV-2 Panel and compared to the cobas® SARS-CoV-2 Test, 100 samples showed concordant results. One sample was found to be inconclusive with the MassARRAY® SARS-CoV-2 Panel. When time-to-results were compared, the new assay showed longer total and hands-on times. Conclusions The MassARRAY® SARS-CoV-2 Panel showed a good performance and proved to be suitable for use in the routine diagnostic laboratory. Especially during phases of shortage of reagents and/or disposables, the new test system appears as beneficial alternative to standard assays used for detection of SARS-CoV-2 RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.