In this paper, we considered the numerical approach for solving a nonlinear boundary value problem for the system of differential-algebraic equations with delay argument. The shooting method is used to solve the boundary value problem. The Newton method is used to find the parameter of shooting. To overcome the difficulties associated with the choice of the initial approximation we apply E. Lahaye’s parameter continuation method. If the curve of the solution contains limit points, the method diverges. Then to find the parameter we used the method of continuation with respect to the best parameter - the length of the curve of the solution set. The solution is constructed by advancing the sequence of values of the parameter. With a discrete continuation, the initial-value problem is transformed by a finite-difference representation of the derivatives and entering the best argument and the corresponding equation of hypersphere. The resulting system is solved using the Newton method. To find the values of the functions at the delay point Lagrange polynomial with three points is used. An example of the behavior of an elastoviscoplastic rod is considered.
The solution of the boundary value problems for system of nonlinear differential equations with argument delay is considered in the article. The solution is based on the shooting method. Within its framework the method of continuation with respect to parameter in the Lahaye form, method of the best parametrization and the Newton method are implemented that allow to find possible solutions. To solve the Cauchy problem at each step of the shooting method the discrete continuation method with respect to the best parameter combined with the Newton method is applied. This approach allows to build the solution in the case when singular limit points exist. That provides continuation of Newton iteration process. The algorithm is completed by calculating the Lagrange polynomial to obtain the values of function in the delay points. The example given in the article represents the advantages of the proposed method.
Рассматривается численный метод решения нелинейной краевой задачи для системы дифференциально-алгебраических уравнений с запаздывающим аргументом, имеющих предельные особые точки. Для численного решения краевой задачи применяется метод стрельбы. Значение параметра «пристрелки» вычисляется с помощью метода Ньютона. Рассматривается случай, когда задача является плохо обусловленной, вследствие чего метод может расходиться. В этом случае решение строится продвижением по наилучшему параметру, которым является длина кривой множества решений. Решение начальной задачи при каждом найденном значении параметра «пристрелки» вычисляется с помощью метода непрерывного продолжения по наилучшему параметру.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.