The aim of this study was to investigate acute vasodilator responses to phytoestrogens and selective estrogen receptor-alpha (ERalpha) agonist in isolated small arteries from men with established coronary heart disease (CHD) and with a history of myocardial infarction versus healthy male control subjects. As to methodology, small arteries obtained from subcutaneous fat biopsies and mounted on a wire myograph were preconstricted with norepinephrine, and dilator responses to increasing nanomolar-micromolar concentrations of the phytoestrogens resveratrol and genistein (predominantly ERbeta agonists) and to propyl-[1H]-pyrazole-1,3,5-triyl-trisplenol (PPT, a selective ERalpha agonist) were determined. These were compared with responses to reference compound 17beta-estradiol (17beta-E2). Concentration-response curves were constructed before and after nitric oxide (NO) synthase inhibition with Nomega-nitro-L-arginine methyl ester. As a result, relaxation induced by the investigated compounds was similar in men with CHD and control men, but in both groups PPT and genistein-induced relaxation was greater than that of resveratrol and 17beta-E2. NO contributed to both phytoestrogens and PPT-induced relaxation but not to 17beta-E2 responses in arteries from control men. This NO-mediated component of relaxation was absent in arteries from men with established CHD. In conclusion, phytoestrogens, at concentrations achievable by ingestion of phytoestrogen-rich food products, evoke dilatation ex vivo of small peripheral arteries from normal men and those with established CHD. The contribution of NO to dilatory responses by these compounds is pertinent to arteries from control males, whereas other NO-independent dilatory mechanism(s) are involved in arteries from CHD.
The objectives of this study were to determine whether acute dilatory responses to estrogen receptor agonists are altered in isolated arteries from estrogen receptor beta-deficient mice (beta-ERKO) and to gain insight into the role of nitric oxide (NO) in these responses. Femoral arteries (approximately 250 microm) from male and female beta-ERKO mice and wild-type (WT) littermates (26 female, 13 in each group; and 24 male, 12 in each group) were mounted on a Multi-Myograph. Concentration-response curves to 17beta-estradiol (17beta-E2) and the selective estrogen receptor-alpha (ER-alpha) agonist propyl-[1H]-pyrazole-1,3,5-triy-trisphenol (PPT) were obtained before and after NO synthase (NOS) inhibition [Nomega-nitro-L-arginine methyl ester (L-NAME), 0.1 mM] in arteries preconstricted with U-46619 (a thromboxane analog). In WT mice, responses to the potent estrogen receptor-beta (ER-beta) agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and the contribution of NO were also assessed. Concentration-response curves to 17beta-E2 and PPT were similar in arteries from WT and -ERKO mice of both genders, but NO-mediated relaxation was different, since L-NAME reduced 17-E2 mediated relaxation in arteries from male and female beta-ERKO but not WT mice (P < 0.05). NOS inhibition reduced dilation to PPT in arteries from male and female WT mice, as well as arteries from female beta-ERKO mice (P < 0.05). Responses to DPN in arteries from WT female and male mice did not differ after NOS inhibition. The acute dilatory responses to estrogenic compounds are similar in WT and beta-ERKO mice but differ mechanistically. Because NO appeared to contribute to responses to 17beta-E2 in arteries from beta-ERKO but not WT mice, the presence of ER- apparently inhibits ER--mediated NO relaxation.
The role of the estrogen receptor (ER) subtypes in the modulation of vascular function is poorly understood. The aim of this study was to characterize ex vivo the functional properties of small arteries and their response to estrogens in the mesenteric circulation of female and male ER-beta knockout mice (beta-ERKO) and their wild-type (WT) littermates. Responses to changes in intraluminal flow and pressure were obtained before and after incubation with 17beta-estradiol or ER-alpha agonist propyl-pyrazole-triol (3 h; 10 nM). Cumulative concentration-response curves to acetylcholine, norepinephrine, and passive distensibility were compared with respect to sex and genotype. The collagen and elastin content within the vascular wall and ER expression were also determined. Endothelial morphology was visualized by scanning electron microscopy. 17beta-Estradiol and propyl-pyrazole-triol-treated arteries from female beta-ERKO and WT mice showed enhanced flow-mediated dilation, but this was not evident in males. Distensibility was decreased in arteries from beta-ERKO females. Sex differences in myogenic tone were observed in 17beta-estradiol-treated arteries, but were similar between beta-ERKO and WT mice. Acetylcholine- and norepinephrine-induced responses were similar between groups and sexes. ER-alpha was similarly expressed in the endothelium and media of arteries from all groups studied, as well as ER-beta in WT animals. Endothelial morphology was similar in arteries from animals of both sexes and genotype; however, arterial elastin content was decreased, and collagen content was increased in beta-ERKO male compared with WT male and with beta-ERKO female. We suggest that ERs play a sex-specific role in estrogen-mediated flow responses and distensibility, and that deletion of ER-beta affects artery structure but only in male animals. Further studies in beta-ERKO mice with established hypertension and in alpha-ERKO mice are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.