BackgroundHuman immunodeficiency virus type 1 (HIV-1) has a biased nucleotide composition different from human genes. This raises the question of how evolution has chosen the nucleotide sequence of HIV-1 that is observed today, or to what extent the actual encoding contributes to virus replication capacity, evolvability and pathogenesis. Here, we applied the previously described synthetic attenuated virus engineering (SAVE) approach to HIV-1.ResultsUsing synonymous codon pairs, we rationally recoded and codon pair–optimized and deoptimized different moieties of the HIV-1 gag and pol genes. Deoptimized viruses had significantly lower viral replication capacity in MT-4 and peripheral blood mononuclear cells (PBMCs). Varying degrees of ex vivo attenuation were obtained, depending upon both the specific deoptimized region and the number of deoptimized codons. A protease optimized virus carrying 38 synonymous mutations was not attenuated and displayed a replication capacity similar to that of the wild-type virus in MT-4 cells and PBMCs. Although attenuation is based on several tens of nucleotide changes, deoptimized HIV-1 reverted to wild-type virulence after serial passages in MT-4 cells. Remarkably, no reversion was observed in the optimized virus.ConclusionThese data demonstrate that SAVE is a useful strategy to phenotypically affect the replicative properties of HIV-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.