BackgroundWalking disabilities negatively affect inclusion in society and quality of life and increase the risk for secondary complications. It has been shown that external feedback applied by therapists and/or robotic training devices enables individuals with gait abnormalities to consciously normalize their gait pattern. However, little is known about the effects of a technically-assisted over ground feedback therapy. The aim of this study was to assess whether automatic real-time feedback provided by a shoe-mounted inertial-sensor-based gait therapy system is feasible in individuals with gait impairments after incomplete spinal cord injury (iSCI), stroke and in the elderly.MethodsIn a non-controlled proof-of-concept study, feedback by tablet computer-generated verbalized instructions was given to individuals with iSCI, stroke and old age for normalization of an individually selected gait parameter (stride length, stance or swing duration, or foot-to-ground angle). The training phase consisted of 3 consecutive visits. Four weeks post training a follow-up visit was performed. Visits started with an initial gait analysis (iGA) without feedback, followed by 5 feedback training sessions of 2–3 min and a gait analysis at the end. A universal evaluation and FB scheme based on equidistant levels of deviations from the mean normal value (1 level = 1 standard deviation (SD) of the physiological reference for the feedback parameter) was used for assessment of gait quality as well as for automated adaptation of training difficulty. Overall changes in level over iGAs were detected using a Friedman’s Test. Post-hoc testing was achieved with paired Wilcoxon Tests. The users’ satisfaction was assessed by a customized questionnaire.ResultsFifteen individuals with iSCI, 11 after stroke and 15 elderly completed the training. The average level at iGA significantly decreased over the visits in all groups (Friedman’s test, p < 0.0001), with the biggest decrease between the first and second training visit (4.78 ± 2.84 to 3.02 ± 2.43, p < 0.0001, paired Wilcoxon test). Overall, users rated the system’s usability and its therapeutic effect as positive.ConclusionsMobile, real-time, verbalized feedback is feasible and results in a normalization of the feedback gait parameter. The results form a first basis for using real-time feedback in task-specific motor rehabilitation programs.Trial registrationDRKS00011853, retrospectively registered on 2017/03/23.Electronic supplementary materialThe online version of this article (10.1186/s12984-018-0389-4) contains supplementary material, which is available to authorized users.
Measurements of exercise-induced metabolic changes, such as oxygen consumption, carbon dioxide exhalation or lactate concentration, are important indicators for assessing the current performance level of athletes in training science. With exercise-limiting metabolic processes occurring in loaded muscles, P-MRS represents a particularly powerful modality to identify and analyze corresponding training-induced alterations. Against this background, the current study aimed to analyze metabolic adaptations after an exhaustive exercise in two calf muscles (m. soleus - SOL - and m. gastrocnemius medialis - GM) of sprinters and endurance athletes by using localized dynamic P-MRS. In addition, the respiratory parameters VO and VCO , as well as blood lactate concentrations, were monitored simultaneously to assess the effects of local metabolic adjustments in the loaded muscles on global physiological parameters. Besides noting obvious differences between the SOL and the GM muscles, we were also able to identify distinct physiological strategies in dealing with the exhaustive exercise by recruiting two athlete groups with opposing metabolic profiles. Endurance athletes tended to use the aerobic pathway in the metabolism of glucose, whereas sprinters produced a significantly higher peak concentration of lactate. These global findings go along with locally measured differences, especially in the main performer GM, with sprinters revealing a higher degree of acidification at the end of exercise (pH 6.29 ± 0.20 vs. 6.57 ± 0.21). Endurance athletes were able to partially recover their PCr stores during the exhaustive exercise and seemed to distribute their metabolic activity more consistently over both investigated muscles. In contrast, sprinters mainly stressed Type II muscle fibers, which corresponds more to their training orientation preferring the glycolytic energy supply pathway. In conclusion, we were able to analyze the relation between specific local metabolic processes in loaded muscles and typical global adaptation parameters, conventionally used to monitor the training status of athletes, in two cohorts with different sports orientations.
Entwicklung, Normwertgenerierung und klinische Anwendbarkeit eines Scores zur Evaluation der Standstabilität Schmerzen im Bewegungssystem entstehen häufig durch Über-oder Fehlbelastung. Ursächlich können neben den Störungen der Stereotype allgemeiner Bewegungsabläufe auch die des Stehens sein. Der Stand wurde aber bislang kaum als motorische Aufgabe betrachtet. Mit dem hier vorgestellten JESS-Score ist es möglich, die notwendigen motorischen Fähigkeiten für das Stehen differenzierter zu untersuchen als bisher. Durch die neu gewonnenen Normwerte können nun konkrete Behandlungsoptionen und damit gezielte Therapievarianten eingeleitet werden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.