A new series of betulin derivatives containing one or two pharmacophores bearing an acetylenic and carbonyl function at the C-3 and/or C-28 positions has been synthesized and characterized by 1H- and 13C-NMR, IR, MS and elemental analyses. The crystal structure of 28-O-propynoylbetulin was determined by X-ray structural analysis. All new compounds, as well as betulin, were tested in vitro for their antiproliferative activity against human SW707 colorectal, CCRF/CEM leukemia, T47D breast cancer, and against murine P388 leukemia and Balb3T3 normal fibroblasts cell lines. Most of the compounds showed better cytotoxicity than betulin and cisplatin used as reference agent. 28-O-Propynoylbetulin was the most potent derivative, being over 500 times more potent than betulin and about 100 times more cytotoxic than cisplatin against the human leukemia (CCRF/CEM) cell line, with an ID50 value of 0.02 μg/mL.
This article presents the investigation results of the polarized IR spectra of the hydrogen bond in N-phenylacrylamide crystals measured in the frequency range of the proton and deuteron, ν(N-H) and ν(N-D), stretching vibration bands. The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The proposed model of the centrosymmetric dimer of hydrogen bonds facilitated the explanation of the well-developed, two-branch structure of the ν(N-H) and ν(N-D) bands as well as the isotopic dilution effects in the spectra. The vibronic mechanism of the generation of the long-wave branch of the ν(N-H) band ascribed to the excitation of the totally symmetric proton vibration was elucidated. The complex fine structure pattern of ν(N-H) and ν(N-D) bands in N-phenylacrylamide spectra in comparison with the spectra of other secondary amide crystals (e.g., N-methylacetamide and acetanilide) can be accounted for in terms of the vibronic model for the forbidden transition breaking in the dimers. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of N-phenylacrylamide crystals, the H/D isotopic "self-organization" effects were revealed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.