Bacterial lipopolysaccharide (LPS) stimulates the hypothalamo-pituitary-adrenal axis by a mechanism involving the release of cytokines, which activate the CRH-ACTH system and, as a result, increase glucocorticoid secretion. In the present study we investigated the possibility that endogenous sex hormones modulate the in vivo endotoxin-stimulated adrenal and immune responses in adult BALB/c mice. In preliminary experiments we determined that the maximal glucocorticoid release in response to LPS (50 micrograms, ip) administration was reached 2 h after treatment. The endotoxin effect on the adrenal and immune responses was then tested in male, randomly cycling female, 20-day-gonadectomized and 20-day-gonadectomized mice treated with either testosterone or estradiol. In addition, in vitro experiments were performed to determine whether 1) LPS exerts any direct effect on basal and ACTH-stimulated corticosterone release, and 2) adrenal function is influenced by bilateral gonadectomy and sex steroid therapy. Our results indicate that 1) randomly cycling female mice have significantly more pronounced corticosterone secretion than males 2 h after endotoxin injection, although the tumor necrosis factor responses were similar; 2) the response of the hypothalamo-pituitary-adrenal axis to endotoxin stimulation in female mice was invariable throughout the different stages of the normal estrous cycle; 3) gonadectomy leads to enhanced (P < 0.05) adrenal and immune responses to LPS stimulation compared to the responses in shams; 4) the endotoxin-elicited adrenal and immune overresponses observed in gonadectomized mice are reversed by testosterone treatment, regardless of sex; 5) LPS does not directly modify spontaneous and ACTH-stimulated adrenal corticosterone secretion; and 6) gonadectomy alone or combined with sex steroid therapy does not increase the in vitro adrenal response to ACTH stimulation. Our findings further suggest an evident neuroendocrine-immunological sexual dimorphism during the acute phase of inflammatory processes.
Testicular inflammation with compromised fertility can occur despite the fact that the testis is considered an immunoprivileged organ. Testicular macrophages have been described as cells with an immunosuppressor profile, thus contributing to the immunoprivilege of the testis. Experimental autoimmune orchitis (EAO) is a model of organ-specific autoimmunity and testicular inflammation. EAO is characterized by an interstitial inflammatory mononuclear cell infiltration, damage of the seminiferous tubules and germ cell apoptosis. Here we studied the phenotype and functions of testicular macrophages during the development of EAO. By stereological analysis, we detected an increased number of resident (ED2+) and non-resident (ED1+) macrophages in the testicular interstitium of rats with orchitis. We showed that this increase was mainly due to monocyte recruitment. The in vivo administration of liposomes containing clodronate in rats undergoing EAO led to a reduction in the number of testicular macrophages, which correlated with a decreased incidence and severity of the testicular damage and suggests a pathogenic role of macrophages in EAO. By immunohistochemistry and flow cytometry we detected an increased number of testicular macrophages expressing MHC class II, CD80 and CD86 costimulatory molecules in rats with orchitis. Also, testicular macrophages from rats with EAO showed a higher production of IFNgamma (ELISA). We conclude that testicular macrophages participate in EAO development, and the ED1+ macrophage subset is the main pathogenic subpopulation. They stimulate the immune response through the production of pro-inflammatory cytokines and antigen presentation and thus activation of T cells in the target organ.
We studied the testicular macrophages of rats with experimental autoimmune orchitis (EAO) and analyzed whether the tumor necrosis factor-alpha (TNFalpha) is involved in germ cell apoptosis and in Leydig cell steroidogenesis. The EAO was induced in adult male Sprague-Dawley rats by active immunization with testicular homogenate and adjuvants. In the experimental group, a severe orchitis was observed 80 days after the first immunization. ED1- and ED2-positive macrophages were quantified by immunohistochemistry. The TNFalpha concentration of conditioned media from testicular macrophages (TMCM) was determined by ELISA. The number of apoptotic TNF receptor 1 (TNFR1)-positive germ cells was identified by combining in situ end labeling of apoptotic DNA and immunohistochemical techniques. The effect of TNFalpha on Leydig cell testosterone production was determined by RIA. In rats with EAO, we observed a significant increase in the number of TNFalpha-positive testicular macrophages, the TNFalpha concentration in TMCM, and the number of TNFR1-positive germ cells. Sixty percent of TNFR1-positive germ cells were apoptotic. These results suggest that TNFalpha could be involved in the pathogenesis of EAO. Acting together with other local factors such as Fas-FasL, TNFalpha could trigger germ cell apoptosis. We also demonstrated that TNFalpha inhibited in vitro testosterone production in basal and hCG-stimulated Leydig cells from rats with orchitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.