Ovarian cancer (OC) is the deadliest gynecologic malignancy, which is mainly due to late-stage diagnosis and chemotherapy resistance. Therefore, new and more effective treatments are urgently needed. The in vitro effects of Panobinostat (LBH), a histone deacetylase inhibitor that exerts pleiotropic antitumor effects but induces autophagy, in combination with Chloroquine (CQ), an autophagy inhibitor that avoid this cell survival mechanism, were evaluated in 4 OC cell lines. LBH and CQ inhibited ovarian cancer cell proliferation and induced apoptosis, and a strong synergistic effect was observed when combined. Deeping into their mechanisms of action we show that, in addition to autophagy modulation, treatment with CQ increased reactive oxygen species (ROS) causing DNA double strand breaks (DSBs), whereas LBH inhibited their repair by avoiding the correct recruitment of the recombinase Rad51 to DSBs. Interestingly, CQ-induced DSBs and cell death caused by CQ/LBH combination were largely abolished by the ROS scavenger N-Acetylcysteine, revealing the critical role of DSB generation in CQ/LBH-induced lethality. This role was also manifested by the synergy found when we combined CQ with Mirin, a well-known homologous recombination repair inhibitor. Altogether, our results provide a rationale for the clinical investigation of CQ/LBH combination in ovarian cancer.
Pan-Gyn cancers entail 1 in 5 cancer cases worldwide, breast cancer being the most commonly diagnosed and responsible for most cancer deaths in women. The high incidence and mortality of these malignancies, together with the handicaps of taxanes —first-line treatments— turn the development of alternative therapeutics into an urgency. Taxanes exhibit low water solubility that require formulations that involve side effects. These drugs are often associated with dose-limiting toxicities and with the appearance of multi-drug resistance (MDR). Here, we propose targeting tubulin with compounds directed to the colchicine site, as their smaller size offer pharmacokinetic advantages and make them less prone to MDR efflux. We have prepared 52 new Microtubule Destabilizing Sulfonamides (MDS) that mostly avoid MDR-mediated resistance and with improved aqueous solubility. The most potent compounds, N-methyl-N-(3,4,5-trimethoxyphenyl-4-methylaminobenzenesulfonamide 38, N-methyl-N-(3,4,5-trimethoxyphenyl-4-methoxy-3-aminobenzenesulfonamide 42, and N-benzyl-N-(3,4,5-trimethoxyphenyl-4-methoxy-3-aminobenzenesulfonamide 45 show nanomolar antiproliferative potencies against ovarian, breast, and cervix carcinoma cells, similar or even better than paclitaxel. Compounds behave as tubulin-binding agents, causing an evident disruption of the microtubule network, in vitro Tubulin Polymerization Inhibition (TPI), and mitotic catastrophe followed by apoptosis. Our results suggest that these novel MDS may be promising alternatives to taxane-based chemotherapy in chemoresistant Pan-Gyn cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.