The impact of different environmental salinities on the energy metabolism of gills, kidney, liver, and brain was assessed in gilthead sea bream (Sparus aurata) acclimated to brackish water [BW, 12 parts/thousand (ppt)], seawater (SW, 38 ppt) and hyper saline water (HSW, 55 ppt) for 14 days. Plasma osmolality and levels of sodium and chloride presented a clear direct relationship with environmental salinities. A general activation of energy metabolism was observed under different osmotic conditions. In liver, an enhancement of glycogenolytic and glycolytic potential was observed in fish acclimated to BW and HSW compared with those in SW. In plasma, an increased availability of glucose, lactate, and protein was observed in parallel with the increase in salinity. In gills, an increased Na ϩ -K ϩ -ATPase activity, a clear decrease in the capacity for use of exogenous glucose and the pentose phosphate pathway, as well as an increased glycolytic potential were observed in parallel with the increased salinity. In kidney, Na ϩ -K ϩ -ATPase activity and lactate levels increased in HSW, whereas the capacity for the use of exogenous glucose decreased in BW-and HSWacclimated fish compared with SW-acclimated fish. In brain, fish acclimated to BW or HSW displayed an enhancement in their potential for glycogenolysis, use of exogenous glucose, and glycolysis compared with SW-acclimated fish. Also in brain, lactate and ATP levels decreased in parallel with the increase in salinity. The data are discussed in the context of energy expenditure associated with osmotic acclimation to different environmental salinities in fish euryhaline species.Gilthead sea bream; Sparus aurata; osmoregulation; energy metabolism ADAPTATION OF EURYHALINE FISH to different environmental salinities induces changes/activation of ion transport mechanisms. This adaptation is usually accompanied by changes in oxygen consumption, suggesting variations in the energetic demands for osmoregulation. Thus five patterns of metabolic response to altered environmental salinities have been suggested by Morgan and Iwama (37) in fish, including: 1) no change in metabolic rate, 2) metabolic rate is minimum in isotonic salinity and increased at lower and higher salinities, 3) metabolic rate increases linearly with salinity, 4) metabolic rates higher in freshwater (FW) that decrease in isotonic media [do not tolerate seawater (SW)], and 5) rate highest in SW and decreasing in other salinities. These changes in oxygen consumption can lead to variations in whole body metabolism. The metabolic response of the fish to different osmotic conditions undoubtedly includes both stress and osmoregulation components, but the relative energetic demands of these processes cannot be discerned from whole animal oxygen consumption. Thus, not unexpectedly, alterations in intermediary metabolism related to osmoregulation are not fully understood in fish (41). In addition, the influence of environmental salinities on the growth rate in fish is also poorly understood (4).Although the function...
The branchial osmoregulatory response of gilthead sea bream (Sparus auratus L.) to short-term (2-192 hr) and long-term (2 weeks) exposure to different environmental salinities (5 per thousand, 15 per thousand, 25 per thousand, 38 per thousand and 60 per thousand) was investigated. A "U-shaped" relationship was observed between environmental salinity and gill Na+,K+ -ATPase activity in both long- and short-term exposure to altered salinity, with the increase in activity occurring between 24 and 96 hr after the onset of exposure. Plasma osmolality and plasma ions (sodium, chloride, calcium and potassium) showed a tendency to increase in parallel with salinity. These variables only differed significantly (P<0.05) in fish adapted to 60 per thousand salinity with respect to fish adapted to full-strength sea-water (SW). Plasma glucose remained unchanged whereas plasma lactate was elevated at 5 per thousand and 60 per thousand. Muscle water content (MWC) was significantly lower in fish adapted to 60 per thousand. Chloride cells (CC) were only present on the surface of the gill filaments and absent from the secondary lamellae. CC distribution was not altered by external salinity. However, the number and size of CC were significantly increased at salinity extremes (5 per thousand and 60 per thousand), whereas fish exposed to intermediate salinities (15 per thousand and 25 per thousand) had fewer and smaller cells. Furthermore, the CC of fish exposed to diluted SW became rounder whereas they were more elongated in fish in full-strength and hypersaline SW. This is consistent with previous reports indicating the existence of two CC types in euryhaline fish. At likely environmental salinities, gilthead sea bream show minor changes in plasma variables and the effective regulation of gill Na+,K+ -ATPase. However, at very low salinities both haemodilution and up-regulation of gill Na+,K+ -ATPase predict a poor adaptation most likely related to deficiency or absence of specific components of the CC important for ion xuptake.
Changes in different osmoregulatory and metabolic parameters over time were assessed in gills, kidney, liver and brain of gilthead sea bream Sparus auratus transferred either from seawater (SW, 38 p.p.t.) to hypersaline water (HSW, 55 p.p.t.) or from SW to low salinity water (LSW, 6 p.p.t.) for 14 days. Changes displayed by osmoregulatory parameters revealed two stages during hyperosmotic and hypo-osmotic acclimation: (i) an adaptive period during the first days of acclimation (1-3 days), with important changes in these parameters, and (ii) a chronic regulatory period (after 3 days of transfer) where osmotic parameters reached homeostasis. From a metabolic point of view, two clear phases can also be distinguished during acclimation to hyperosmotic or hypo-osmotic conditions. The first one coincides with the adaptive period and is characterized by enhanced levels of plasma metabolites (glucose, lactate, triglycerides and protein), and use of these metabolites by different tissues in processes directly or indirectly involved in osmoregulatory work. The second stage coincides with the chronic regulatory period observed for the osmoregulatory parameters and is metabolically characterized in HSW-transferred fish by lower energy expenditure and a readjustment of metabolic parameters to levels returning to normality, indicative of reduced osmoregulatory work in this stage. In LSW-transferred fish, major changes in the second stage include: (i) decreased glycolytic potential, capacity for exporting glucose and potential for amino acid catabolism in liver; (ii) enhanced use of exogenous glucose through glycolysis, pentose phosphate and glycogenesis in gills; (iii) increased glycolytic potential in kidney; and (iv) increased glycogenolytic potential and capacity for use of exogenous glucose in brain.
The influence of acclimation to different environmental salinities (low salinity water, LSW; seawater, SW; and hyper saline water, HSW) and feeding conditions (fed and food deprived) for 14 days was assessed on osmoregulation and energy metabolism of several tissues of gilthead sea bream Sparus auratus. Fish were randomly assigned to one of six treatments: fed fish in LSW, SW, and HSW, and food-deprived fish in LSW, SW, and HSW. After 14 days, plasma, liver, gills, kidney and brain were taken for the assessment of plasma osmolality, plasma cortisol, metabolites and the activity of several enzymes involved in energy metabolism. Food deprivation abolished or attenuated the increase in gill Na+,K+-ATPase activity observed in LSW- and HSW-acclimated fish, respectively. In addition, a linear relationship between renal Na+,K+-ATPase activity and environmental salinity was observed after food deprivation, but values decreased with respect to fed fish. Food-deprived fish acclimated to extreme salinities increased production of glucose through hepatic gluconeogenesis, and the glucose produced was apparently exported to other tissues and served to sustain plasma glucose levels. Salinity acclimation to extreme salinities enhanced activity of osmoregulatory organs, which is probably sustained by higher glucose use in fed fish but by increased use of other fuels, such as lactate and amino acids in food-deprived fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.