Although podoconiosis is one of the major causes of tropical lymphoedema and is endemic in Ethiopia its epidemiology and risk factors are poorly understood. Individual-level data for 129,959 individuals from 1,315 communities in 659 woreda (districts) were collected for a nationwide integrated survey of lymphatic filariasis and podoconiosis. Blood samples were tested for circulating Wuchereria bancrofti antigen using immunochromatographic card tests. A clinical algorithm was used to reach a diagnosis of podoconiosis by excluding other potential causes of lymphoedema of the lower limb. Bayesian multilevel models were used to identify individual and environmental risk factors. Overall, 8,110 of 129,959 (6.2%, 95% confidence interval [CI] 6.1–6.4%) surveyed individuals were identified with lymphoedema of the lower limb, of whom 5,253 (4.0%, 95% CI 3.9–4.1%) were confirmed to be podoconiosis cases. In multivariable analysis, being female, older, unmarried, washing the feet less frequently than daily, and being semiskilled or unemployed were significantly associated with increased risk of podoconiosis. Attending formal education and living in a house with a covered floor were associated with decreased risk of podoconiosis. Podoconiosis exhibits marked geographical variation across Ethiopia, with variation in risk associated with variation in rainfall, enhanced vegetation index, and altitude.
Global efforts to address neglected tropical diseases (NTDs) were stimulated in January 2012 by the London declaration at which 22 partners, including the Bill & Melinda Gates Foundation, World Bank, World Health Organization (WHO) and major pharmaceutical companies committed to sustaining and expanding NTD programmes to eliminate or eradicate 11 NTDs by 2020 to achieve the goals outlined in the recently published WHO road map. Here, we present the current context of preventive chemotherapy for some NTDs, and discuss the problems faced by programmes as they consider the ‘endgame’, such as difficulties of access to populations in post-conflict settings, limited human and financial resources, and the need to expand access to clean water and improved sanitation for schistosomiasis and soil-transmitted helminthiasis. In the case of onchocerciasis and lymphatic filariasis, ivermectin treatment carries a significant risk owing to serious adverse effects in some patients co-infected with the tropical eye worm Loa loa filariasis. We discuss the challenges of managing complex partnerships, and maintain advocacy messages for the continued support for elimination of these preventable diseases.
BackgroundEthiopia is assumed to have the highest burden of podoconiosis globally, but the geographical distribution and environmental limits and correlates are yet to be fully investigated. In this paper we use data from a nationwide survey to address these issues.MethodologyOur analyses are based on data arising from the integrated mapping of podoconiosis and lymphatic filariasis (LF) conducted in 2013, supplemented by data from an earlier mapping of LF in western Ethiopia in 2008–2010. The integrated mapping used woreda (district) health offices’ reports of podoconiosis and LF to guide selection of survey sites. A suite of environmental and climatic data and boosted regression tree (BRT) modelling was used to investigate environmental limits and predict the probability of podoconiosis occurrence.Principal FindingsData were available for 141,238 individuals from 1,442 communities in 775 districts from all nine regional states and two city administrations of Ethiopia. In 41.9% of surveyed districts no cases of podoconiosis were identified, with all districts in Affar, Dire Dawa, Somali and Gambella regional states lacking the disease. The disease was most common, with lymphoedema positivity rate exceeding 5%, in the central highlands of Ethiopia, in Amhara, Oromia and Southern Nations, Nationalities and Peoples regional states. BRT modelling indicated that the probability of podoconiosis occurrence increased with increasing altitude, precipitation and silt fraction of soil and decreased with population density and clay content. Based on the BRT model, we estimate that in 2010, 34.9 (95% confidence interval [CI]: 20.2–51.7) million people (i.e. 43.8%; 95% CI: 25.3–64.8% of Ethiopia’s national population) lived in areas environmentally suitable for the occurrence of podoconiosis.ConclusionsPodoconiosis is more widespread in Ethiopia than previously estimated, but occurs in distinct geographical regions that are tied to identifiable environmental factors. The resultant maps can be used to guide programme planning and implementation and estimate disease burden in Ethiopia. This work provides a framework with which the geographical limits of podoconiosis could be delineated at a continental scale.
BackgroundLymphatic filariasis (LF) is one of the neglected tropical diseases targeted for global elimination by 2020 and to guide elimination efforts countries have, in recent years, conducted extensive mapping surveys. Documenting the past and present distribution of LF and its environmental limits is important for a number of reasons. Here, we present an initiative to develop a global atlas of LF and present a new global map of the limits of LF transmission.MethodsWe undertook a systematic search and assembly of prevalence data worldwide and used a suite of environmental and climatic data and boosted regression trees (BRT) modelling to map the transmission limits of LF.ResultsData were identified for 66 of the 72 countries currently endemic and for a further 17 countries where LF is no longer endemic. Our map highlights a restricted and highly heterogeneous distribution in sub-Saharan Africa, with transmission more widespread in West Africa compared to east, central and southern Africa where pockets of transmission occur. Contemporary transmission occurs across much of south and South-east Asia and the Pacific. Interestingly, the risk map reflects environmental conditions suitable for LF transmission across Central and South America, including the southern States of America, although active transmission is only known in a few isolated foci. In countries that have eliminated LF, our predictions of environmental suitability are consistent with historical distribution.ConclusionsThe global distribution of LF is highly heterogeneous and geographically targeted and sustained control will be required to achieve elimination. This first global map can help evaluate the progress of interventions and guide surveillance activities.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-014-0466-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.