Longitudinal imaging studies are crucial for advancing the understanding of brain development over the lifespan. Thus, more and more studies acquire imaging data at multiple time points or with long follow-up intervals. In these studies changes to magnetic resonance imaging (MRI) scanners often become inevitable which may decrease the reliability of the MRI assessments and introduce biases. We therefore investigated the difference between MRI scanners with subsequent versions (3 Tesla Siemens Verio vs. Skyra) on the cortical and subcortical measures of grey matter in 116 healthy, young adults using the well-established longitudinal FreeSurfer stream for T1-weighted brain images. We found excellent between-scanner reliability for cortical and subcortical measures of grey matter structure (intra-class correlation coefficient > 0.8). Yet, paired t-tests revealed statistically significant differences in at least 67% of the regions, with percent differences around 2 to 4%, depending on the outcome measure. Offline correction for gradient distortions only slightly reduced these biases. Further, T1-imaging based quality measures reflecting gray-white matter contrast systematically differed between scanners. We conclude that scanner upgrades during a longitudinal study introduce bias in measures of cortical and subcortical grey matter structure. Therefore, before upgrading a MRI scanner during an ongoing study, researchers should prepare to implement an appropriate correction method for these effects.
In clinical diagnostics and longitudinal studies, the reproducibility of MRI assessments is of high importance in order to detect pathological changes, but developments in MRI hard- and software often outrun extended periods of data acquisition and analysis. This could potentially introduce artefactual changes or mask pathological alterations. However, if and how changes of MRI hardware, scanning protocols or preprocessing software affect complex neuroimaging outcomes from, e.g., diffusion weighted imaging (DWI) remains largely understudied. We therefore compared DWI outcomes and artefact severity of 121 healthy participants (age range 19–54 years) who underwent two matched DWI protocols (Siemens product and Center for Magnetic Resonance Research sequence) at two sites (Siemens 3T Magnetom Verio and Skyrafit). After different preprocessing steps, fractional anisotropy (FA) and mean diffusivity (MD) maps, obtained by tensor fitting, were processed with tract-based spatial statistics (TBSS). Inter-scanner and inter-sequence variability of skeletonised FA values reached up to 5% and differed largely in magnitude and direction across the brain. Skeletonised MD values differed up to 14% between scanners. We here demonstrate that DTI outcome measures strongly depend on imaging site and software, and that these biases vary between brain regions. These regionally inhomogeneous biases may exceed and considerably confound physiological effects such as ageing, highlighting the need to harmonise data acquisition and analysis. Future studies thus need to implement novel strategies to augment neuroimaging data reliability and replicability.
1AbstractLongitudinal imaging studies are crucial for advancing the understanding of brain development over the lifespan. Thus, more and more studies acquire imaging data at multiple time points or with long follow-up intervals. In these studies changes to magnetic resonance imaging (MRI) scanners often become inevitable which may decrease the reliability of the MRI assessments and introduce biases.We therefore investigated the difference between MRI scanners with subsequent versions (3 Tesla Siemens Verio vs. Skyra fit) on the cortical and subcortical measures of grey matter in 116 healthy, young adults using the well-established longitudinal FreeSurfer stream for T1-weighted brain images. We found excellent between-scanner reliability for cortical and subcortical measures of grey matter structure (intra-class correlation coefficient > 0.8). Yet, paired t-tests revealed statistically significant differences in at least 75% of the regions, with percent differences up to 5%, depending on the outcome measure. Offline correction for gradient distortions only slightly reduced these biases. Further, T1-imaging based quality measures systematically differed between scanners.We conclude that scanner upgrades during a longitudinal study introduce bias in measures of cortical and subcortical grey matter structure. Therefore, before upgrading a MRI scanner during an ongoing study, researchers should prepare to implement an appropriate correction method for these effects.
In clinical diagnostics and longitudinal studies, the reproducibility of MRI assessments is of high importance in order to detect pathological changes, but developments in MRI hard- and software often outrun extended periods of data acquisition and analysis. This could potentially introduce artefactual changes or masking pathological alterations. However, if and how changes of MRI hardware, scanning protocols or preprocessing software affect complex neuroimaging outcomes from e.g. diffusion weighted imaging (DWI) remains largely understudied. We therefore compared DWI outcomes and artefact severity of 121 healthy participants (age range 19-54 years) who underwent two matched DWI protocols (Siemens product and Center for Magnetic Resonance Research sequence) at two sites (Siemens 3T Magnetom Verio and Skyrafit). After differing preprocessing steps, 3D-fractional anisotropy (FA) maps obtained by tensor fitting were processed with tract-based spatial statistics (TBSS). Inter-scanner and inter-sequence variability of skeletonised FA values reached up to 5% and differed largely in magnitude and direction across the brain. Preprocessing including unringing reduced the Gibbs ringing artefact, and head motion estimates were significantly lower at Skyra. We here demonstrate that DTI outcome measures strongly depend on imaging site and software, and that these biases vary between brain regions. These regionally inhomogeneous biases may exceed and considerably confound physiological effects such as ageing, highlighting the need to harmonise data acquisition and analysis. Future studies thus need to implement novel strategies to augment neuroimaging data reliability and replicability.
In clinical diagnostics and longitudinal studies, the reproducibility of MRI assessments is of high importance in order to detect pathological changes, but developments in MRI hard- and software often outrun extended periods of data acquisition and analysis. This could potentially introduce artefactual changes or mask pathological alterations. However, if and how changes of MRI hardware, scanning protocols or preprocessing software affect complex neuroimaging outcomes from e.g. diffusion weighted imaging (DWI) remains largely understudied. We therefore compared DWI outcomes and artefact severity of 121 healthy participants (age range 19-54 years) who underwent two matched DWI protocols (Siemens product and Center for Magnetic Resonance Research sequence) at two sites (Siemens 3T Magnetom Verio and Skyrafit). After different preprocessing steps, fractional anisotropy (FA) and mean diffusivity (MD) maps,obtained by tensor fitting, were processed with tract-based spatial statistics (TBSS). Inter-scanner and inter-sequence variability of skeletonised FA values reached up to 5% and differed largely in magnitude and direction across the brain. Skeletonised MD values differed up to 14% between scanners. We here demonstrate that DTI outcome measures strongly depend on imaging site and software, and that these biases vary between brain regions. These regionally inhomogeneous biases may exceed and considerably confound physiological effects such as ageing, highlighting the need to harmonise data acquisition and analysis. Future studies thus need to implement novel strategies to augment neuroimaging data reliability and replicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.