Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T . If a sound and complete inference system for first-order logic is guaranteed to terminate on T -satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T -satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.
We present a distributed/parallel prover for propositional satisfiability (SAT), called PSATO, for networks of workstations. PSATO is based on the sequential SAT prover SATO, which is an efficient implementation of the Davis-Putnam algorithm. The masterslave model is used for communication. A simple and effective workload balancing method distributes the workload among workstations. A key property of our method is that the concurrent processes explore disjoint portions of the search space. In this way, we use parallelism without introducing redundant search. Our approach provides solutions to the problems of (i) cumulating intermediate results of separate runs of reasoning programs; (ii) designing highly scalable parallel algorithms and (iii) supporting "fault-tolerant" distributed computing. Several dozens of open problems in the study of quasigroups have been solved using PSATO. We also show how a useful technique called the cyclic group construction has been coded in propositional logic.
Given two inconsistent formulae, a (reverse) interpolant is a formula implied by one, inconsistent with the other, and only containing symbols they share. Interpolation finds application in program analysis, verification, and synthesis, for example, towards invariant generation. An interpolation system takes a refutation of the inconsistent formulae and extracts an interpolant by building it inductively from partial interpolants. Known interpolation systems for ground proofs use colors to track symbols. We show by examples that the color-based approach cannot handle non-ground refutations by resolution and paramodulation/superposition. We present a two-stage approach that works by tracking literals, computes a provisional interpolant, which may contain non-shared symbols, and applies lifting to replace non-shared constants by quantified variables. We obtain an interpolation system for non-ground refutations, and we prove that it is complete, if the only non-shared symbols in provisional interpolants are constants.
Applications in software verification often require determining the satisfiability of first-order formulae with respect to background theories. During development, conjectures are usually false. Therefore, it is desirable to have a theorem prover that terminates on satisfiable instances. Satisfiability Modulo Theories (SMT) solvers have proven to be highly scalable, efficient and suitable for integrated theory reasoning. Inference systems with resolution and superposition are strong at reasoning with equalities, universally quantified variables, and Horn clauses. We describe a theorem-proving method that tightly integrates superposition-based inference system and SMT solver. The combination is refutationally complete if background theory symbols only occur in ground formulae, and non-ground clauses are variable-inactive. Termination is enforced by introducing additional axioms as hypotheses. The system detects any unsoundness introduced by these speculative inferences and recovers from it.
In the context of combinations of theories with disjoint signatures, we classify the component theories according to the decidability of constraint satisfiability problems in finite and infinite models, respectively. We exhibit a theory T 1 such that satisfiability is decidable, but satisfiability in infinite models is undecidable. It follows that satisfiability in T 1 ∪ T 2 is undecidable, whenever T2 has only infinite models, even if signatures are disjoint and satisfiability in T2 is decidable.In the second part of the paper we strengthen the Nelson-Oppen decidability transfer result, by showing that it applies to theories over disjoint signatures, whose satisfiability problem, in either finite or infinite models, is decidable. We show that this result covers decision procedures based on rewriting, generalizing recent work on combination of theories in the rewrite-based approach to satisfiability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.