Menin, the product of the multiple endocrine neoplasia type I gene, has been implicated in several biological processes, including the control of gene expression and apoptosis, the modulation of mitogen-activated protein kinase pathways, and DNA damage sensing or repair. In this study, we have investigated the function of menin in the model organism Drosophila melanogaster. We show that Drosophila lines overexpressing menin or an RNA interference for this gene develop normally but are impaired in their response to several stresses, including heat shock, hypoxia, hyperosmolarity and oxidative stress. In the embryo subjected to heat shock, this impairment was characterized by a high degree of developmental arrest and lethality. The overexpression of menin enhanced the expression of HSP70 in embryos and interfered with its down-regulation during recovery at the normal temperature. In contrast, the inhibition of menin with RNA interference reduced the induction of HSP70 and blocked the activation of HSP23 upon heat shock, Menin was recruited to the Hsp70 promoter upon heat shock and menin overexpression stimulated the activity of this promoter in embryos. A 70-kDa inducible form of menin was expressed in response to heat shock, indicating that menin is also regulated in conditions of stress. The induction of HSP70 and HSP23 was markedly reduced or absent in mutant embryos harboring a deletion of the menin gene. These embryos, which did not express the heat shock-inducible form of menin, were also hypersensitive to various conditions of stress. These results suggest a novel role for menin in the control of the stress response and in processes associated with the maintenance of protein integrity.
BackgroundThe multiple endocrine neoplasia type I gene functions as a tumor suppressor gene in humans and mouse models. In Drosophila melanogaster, mutants of the menin gene (Mnn1) are hypersensitive to mutagens or gamma irradiation and have profound defects in the response to several stresses including heat shock, hypoxia, hyperosmolarity and oxidative stress. However, it is not known if the function of menin in the stress response contributes to genome stability. The objective of this study was to examine the role of menin in the control of the stress response and genome stability.Methodology/Principal FindingsUsing a test of loss-of-heterozygosity, we show that Drosophila strains lacking a functional Mnn1 gene or expressing a Mnn1 dsRNA display increased genome instability in response to non-lethal heat shock or hypoxia treatments. This is also true for strains lacking all Hsp70 genes, implying that a precise control of the stress response is required for genome stability. While menin is required for Hsp70 expression, the results of epistatic studies indicate that the increase in genome instability observed in Mnn1 lack-of-function mutants cannot be accounted for by mis-expression of Hsp70. Therefore, menin may promote genome stability by controlling the expression of other stress-responsive genes. In agreement with this notion, gene profiling reveals that Mnn1 is required for sustained expression of all heat shock protein genes but is dispensable for early induction of the heat shock response.Conclusions/SignificanceMutants of the Mnn1 gene are hypersensitive to several stresses and display increased genome instability when subjected to conditions, such as heat shock, generally regarded as non-genotoxic. In this report, we describe a role for menin as a global regulator of heat shock gene expression and critical factor in the maintenance of genome integrity. Therefore, menin links the stress response to the control of genome stability in Drosophila melanogaster.
The instructors of four biology-related courses at a Canadian university integrated Labster virtual labs in their courses as a pre-lab activity, lecture substitute, or to provide lab experience in courses with no on-site labs. The instructors used a backward design approach to align the labs with the learning objectives of their courses and to connect the labs with their course assessments. A study was conducted to examine students’ perceptions of the usefulness of the virtual labs in terms of content knowledge and lab skills. At the end of each course, the instructors administered an anonymous survey in their classes. In total, 370 students participated. Across all four courses, survey results showed that at least 77% of the students found that virtual lab simulations helped them understand course concepts. At least 74% of the students navigated the virtual labs with no issues and 58% of the students found the simulations to be of high quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.