Heavy metals are important environmental pollutants and their toxicity is a problem of increasing significance for ecological, evolutionary, nutritional, and environmental reasons. Plants posses homeostatic cellular mechanisms to regulate the concentration of metal ions inside the cell to minimize the potential damage that could result from the exposure to nonessential metal ions. This paper summarizes present knowledge in the field of higher plant responses to cadmium, an important environmental pollutant. Knowledge concerning metal toxicity, including mechanisms of cadmium homeostasis, uptake, transport and accumulation are evaluated. The role of the cell wall, the plasma membrane and the mycorrhizas, as the main barriers against cadmium entrance to the cell, as well as some aspects related to phytochelatin-based sequestration and compartmentalization processes are also reviewed. Cadmium-induced oxidative stress was also considered as one of the most studied topics of cadmium toxicity.
In this review we will concentrate in the results published the last years regarding the involvement of polyamines in the plant responses to abiotic stresses, most remarkably on salt and drought stress. We will also turn to other types of abiotic stresses, less studied in relation to polyamine metabolism, such as mineral deficiencies, chilling, wounding, heavy metals, UV, ozone and paraquat, where polyamine metabolism is also modified. There is a great amount of data demonstrating that under many types of abiotic stresses, an accumulation of the three main polyamines putrescine, spermidine and spermine does occur. However, there are still many doubts concerning the role that polyamines play in stress tolerance. Several environmental challenges (osmotic stress, salinity, ozone, UV) are shown to induce ADC activity more than ODC. The rise in Put is mainly attributed to the increase in ADC activity as a consequence of the activation of ADC genes and their mRNA levels. On the other hand, free radicals are now accepted as important mediators of tissue injury and cell death. The polycationic nature of polyamines, positively charged at physiological pH, has attracted the attention of researchers and has led to the hypothesis that polyamines could affect physiological systems by binding to anionic sites, such as those associated with nucleic acids and membrane phospholipids. These amines, involved with the control of numerous cellular functions, including free radical scavenger and antioxidant activity, have been found to confer protection from abiotic stresses but their mode of action is not fully understood yet. In this review, we will also summarize information about the involvement of polyamines as antioxidants against the potential abiotic stress-derived oxidative damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.