Previous studies have linked short sleep duration, poor sleep quality, and late sleep timing with lower health-related quality of life (HRQoL) in children. However, almost all studies relied solely on selfreported sleep information and most were conducted in high income countries. To address these gaps, we studied both device-measured and self-reported sleep characteristics in relation to HRQoL in a sample of children from 12 countries that vary widely in terms of economic and human development.
MethodsThe study sample included 6,626 children aged 9-11 years from Australia,
BackgroundAsthma exacerbations are an important cause of morbidity in asthma. Respiratory infections are often involved in asthma exacerbations in both children and adults. Some individuals with asthma have increased susceptibility to viral infections and as a result increased rates of asthma exacerbations. We sought to identify a transcriptomic signature in the blood associated with asthma exacerbations triggered by respiratory infections (AETRI) and determine its association with increased risk for asthma exacerbations.MethodsWe conducted a two-step study using publicly available, previously generated transcriptomic signatures in peripheral blood mononuclear cells (PBMCs) from asthmatics to identify novel markers of increased risk for asthma exacerbations. In the 1st step, we identified an in vitro PBMC signature in response to rhinovirus. In the 2nd step, we used the in vitro signature to filter PBMC transcripts in response to asthma exacerbations in an independent in vivo cohort. Three different subgroups were identified and studied in the in vivo cohort: 1. Single AETRI; 2. Multiple AETRIs; and 3. Single non-infectious asthma exacerbations. We performed pathway and network analyses in all independent comparisons. We also performed an immunologic gene set enrichment analysis (GSEA) of the comparison between single AETRI and non-infectious asthma exacerbations.ResultsThe in vitro signature identified 4354 differentially expressed genes (DEGs) with a fold change (FC) ≥ 1.2, false discovery rate (FDR) < 0.05. Subsequent analyses filtered by this in vitro signature on an independent cohort of adult asthma identified 238 DEGs (FC≥1.1, FDR < 0.1) in subjects with a single AETRI and no DEGs in single non-infectious asthma exacerbations. A comparison between the response in subjects with single and multiple AETRIs identified two discordant gene subsets. In the largest discordant subset (n = 63 genes) we identified an impaired type I interferon and STAT1 response in multiple AETRIs during the acute phase of the exacerbation and an upregulated STAT1 response at baseline. The STAT1 upregulation at baseline in subjects with multiple AETRIs was accompanied by upregulation of pro-inflammatory molecules including IL-15, interferon-stimulated genes (ISGs), several toll-like receptors 2, − 4, − 5 and − 8 and a triggering receptor expressed on myeloid cells 1 (TREM1) network.ConclusionsSubjects with asthma and multiple AETRIs display a pro-inflammatory signature at baseline, associated with elevated STAT, IL-15 and ISGs, and an impaired STAT1 response during acute asthma exacerbations.Electronic supplementary materialThe online version of this article (10.1186/s12920-018-0340-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.