The dynamics of concentration fluctuations of three critical samples of the 3-methylpyridine (3MP)+water+NaBr system have been measured by photon correlation spectroscopy. The collective-diffusion coefficient D shows the usual Ising behavior near the critical temperature T(c). However, as |T-T(c)| increases, the dynamic correlation length calculated from D, xi, takes values higher than the correlation length of the critical fluctuations calculated from static light scattering, xi(s). At the largest |T-T(c)| measured, xi approaches the value, xi(0,d) approximately equal to 1.13 nm, while the amplitude of xi(s) is xi(0,s)=0.38 nm. Pulsed-gradient NMR spectroscopy points out the existence of two dynamic contributions. One of them is consistent with the existence of molecular entities of hydrodynamic radius 0.31 nm, while the other one indicates the existence of aggregates rich in 3MP of radius 1.16 nm. The existence of the aggregates may explain the apparent anomalous behavior of the dynamic light scattering experiments for this system far from the critical point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.