Glioblastoma multiforme (GBM) is an incurable malignancy with inherent tendency to recur. In this study, we have comparatively analyzed the epigenetic profile of 32 paired tumor samples of relapsed GBM and their corresponding primary neoplasms with special attention to genes involved in the mitochondria-independent apoptotic pathway. The CpG island promoter hypermethylation status was assessed by methylation-specific polymerase chain reaction and selected samples were double checked by bisulfite genomic sequencing. Thirteen genes were analyzed for DNA methylation: the pro-apoptotic CASP8, CASP3, CASP9, DcR1, DR4, DR5 and TMS1; the cell adherence CDH1 and CDH13; the candidate tumor suppressor RASSF1A and BLU; the cell cycle regulator CHFR and the DNA repair MGMT. The CpG island promoter hypermethylation profile of relapsed GBM in comparison with their corresponding primary tumors was identical in 37.5% of the cases, whereas in 62.5% of patients, differences in the DNA methylation patterns of the 13 genes were observed. The most prominent distinction was the presence of previously undetected CASP8 hypermethylation in the GBM relapses (P = 0.031). This finding was also linked to the observation that an unmethylated CASP8 CpG island together with methylated BLU promoter in the primary GBM was associated with prolonged time to tumor progression (P = 0.0035). Our data strongly suggest that hypermethylation of the pro-apoptotic CASP8 is a differential feature of GBM relapses. These remarkable findings may foster the development of therapeutic approaches using DNA demethylating drugs and activators of the extrinsic apoptotic pathway to improve the dismal prognosis of GBM.
The messenger RNA 3′-untranslated region (3′UTR) is emerging as critically important in regulating gene expression at posttranscriptional levels. The 3′UTR governs gene expression via orchestrated interactions between mRNA structural components (cis-elements) and specific trans-acting factors (RNA-binding proteins and non-coding RNAs). Alterations in any of these components can lead to disease. Here, we review the mutations in 3′UTR regulatory sequences as well as the aberrant levels, subcellular localization, and posttranslational modifications of trans-acting factors that can promote or enhance the malignant phenotype of cancer cells. A thorough understanding of these alterations and their impact upon 3′UTR-directed posttranscriptional gene regulation will uncover promising new targets for therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.