Vitamin C content in different honey sources has been determined by a simple and rapid chromatographic method (less than 3 min) in honeys from 6 botanical origins. The results together with glucose and fructose content and some physicochemical parameters have been studied in order to discriminate the botanical origin of honeys and in the future certified their quality. A statistical LDA was applied to the data, and differentiation of honey sources was possible with very good agreement. The vitamin C content found in thymus honeys was significantly higher than in other types. This fact makes vitamin C a special marker for thymus honeys that have a higher antioxidant effect than the others giving it special properties. The identification of honey sources is essential for beekeepers in order to certify honeys for consumers.
A quenching phenomenon of riboflavin fluorescence was found in graphene dispersions in PEG ascribed to π–π stacking and H-bonding interactions.
Graphene oxide (GO) is an attractive alternative to graphene for many applications due to its captivating optical, chemical, and electrical characteristics. In this work, GO powders with a different amount of surface groups were synthesized from graphite via an electrochemical two-stage process. Many synthesis conditions were tried to maximize the oxidation level, and comprehensive characterization of the resulting samples was carried out via elemental analysis, microscopies (TEM, SEM, AFM), X-ray diffraction, FT-IR and Raman spectroscopies as well as electrical resistance measurements. SEM and TEM images corroborate that the electrochemical process used herein preserves the integrity of the graphene flakes, enabling to obtain large, uniform and well exfoliated GO sheets. The GOs display a wide range of C/O ratios, determined by the voltage and time of each stage as well as the electrolyte concentration, and an unprecedented minimum C/O value was obtained for the optimal conditions. FT-IR evidences strong intermolecular interactions between neighbouring oxygenated groups. The intensity ratio of D/G bands in the Raman spectra is high for samples prepared using concentrated H2SO4 as an electrolyte, indicative of many defects. Furthermore, these GOs exhibit smaller interlayer spacing than that expected according to their oxygen content, which suggests predominant oxidation on the flake edges. Results point out that the electrical resistance is conditioned mostly by the interlayer distance and not simply by the C/O ratio. The tuning of the oxidation level is useful for the design of GOs with tailorable structural, electrical, optical, mechanical, and thermal properties.
Fluorescence quenching is a valuable tool to gain insight about dynamic changes of fluorophores in complex systems. Graphene (G), a single-layered 2D nanomaterial with unique properties, was dispersed in surfactant aqueous solutions of different nature: non-ionic polyoxyethylene-23-lauryl ether (Brij L23), anionic sodium dodecylsulphate (SDS), and cationic hexadecyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium bromide (DTAB). The influence of the surfactant type, chain length and concentration, G total concentration and G/surfactant weight ratio on the fluorescence intensity of vitamin B2 (riboflavin) was investigated. The quality of the different G dispersions was assessed by scanning and transmission electron microscopies (SEM and TEM). A quenching phenomenon of the fluorescence of riboflavin was found for G dispersions in all the surfactants, which generally becomes stronger with increasing G/surfactant weight ratio. For dispersions in the ionic surfactants, the quenching is more pronounced as the surfactant concentration raises, whilst the non-ionic one remains merely unchanged for the different G/Brij L23 weight ratios. More importantly, results indicate that DTAB solutions are the optimum media for dispersing G sheets, leading to an up to 16-fold drop in the fluorescence intensity. Understanding the mechanism in fluorescence quenching of G dispersions in surfactants could be useful for several optical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.