Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we examined both literature-curated and unbiased experimental data, involving systematic genetic mapping and whole-genome sequencing, to generate a large-scale suppression network among yeast genes. Most suppression pairs identified novel relationships among functionally related genes, providing new insights into the functional wiring diagram of the cell. In addition to suppressor mutations, we identified frequent secondary mutations, in a subset of genes, that likely cause a delay in the onset of stationary phase, which appears to promote their enrichment within a propagating population. These findings allow us to formulate and quantify general mechanisms of genetic suppression.
(2015) Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation, mAbs, 7:5, 863-870, DOI: 10.1080DOI: 10. /19420862.2015 To link to this article: https://doi.org/10. 1080/19420862.2015 Keywords: core fucosylation, sialylation, Nicotiana benthamiana, bisected glycans, glycan modelling, IgG, cetuximab Abbreviations: 3-FucT, Zea maize core a1,3-fucosyltransferase;3-FucT GnTIV, human a1,3-mannosyl-b1,4-N-acetyL-glucosaminyltransferase fused to the CTS region of the Arabidopsis thaliana core a1,3-fucosyltransferase (FUT11); 6-FucT, Mus musculus core a1,6-fucosyltransferase; CH2, constant domain of an IgG heavy chain; CTS, cytoplasmic tail, transmembrane domain and stem region; CxMab cetuximab (Erbitux Ò ); Fab, fragment, antigen-binding; Fc, Fragment crystallizable region of immunoglobulin G; GlcNAc, N-acetylglucosamine; IgG1, Immunoglobulin G subclass 1; LC-ESI-MS, Liquid chromatography-electrospray ionisationmass spectrometry; mAb, monoclonal antibody; SDS-PAGE, Sodium dodecyl sulfate polyacrylamide gel electrophoresis; ST GalT, b1,4-galactosyltransferase fused to the CTS region of the rat a2,6-sialyltransferase; 6-SiaT, a2,6-sialyltransferase;ST GnT-III, b1,4-mannosyl-b1,4-N-acetylglucosaminyltransferase fused to the CTS region of the rat a2,6-sialyltransferase; DXT/FT, Nicotiana benthamiana glycosylation mutants lacking plant specific core b1,2-xylose and a1,3-fucose residuesWe investigated N-glycan processing of immunoglobulin G1 using the monoclonal antibody cetuximab (CxMab), which has a glycosite in the Fab domain in addition to the conserved Fc glycosylation, as a reporter. Three GlcNAc (Gn) terminating bi-antennary glycoforms of CxMab differing in core fucosylation (a1,3-and a1,6-linkage) were generated in a plant-based expression platform. These GnGn, GnGnF 3 , and GnGnF 6 CxMab variants were subjected in vivo to further processing toward sialylation and GlcNAc diversification (bisected and branching structures). Mass spectrometry-based glycan analyses revealed efficient processing of Fab glycans toward envisaged structures. By contrast, Fc glycan processing largely depend on the presence of core fucose. A particularly strong support of glycan processing in the presence of plant-specific core a1,3-fucose was observed. Consistently, molecular modeling suggests changes in the interactions of the Fc carbohydrate chain depending on the presence of core fucose, possibly changing the accessibility. Here, we provide data that reveal molecular mechanisms of glycan processing of IgG antibodies, which may have implications for the generation of glycan-engineered therapeutic antibodies with improved efficacies.
One of the first events taking place when a crystal of a metalloprotein is exposed to X-ray radiation is photoreduction of the metal centres. The oxidation state of a metal cannot always be determined from routine X-ray diffraction experiments alone, but it may have a crucial impact on the metal's environment and on the analysis of the structural data when considering the functional mechanism of a metalloenzyme. Here, UV-Vis microspectrophotometry is used to test the efficacy of selected scavengers in reducing the undesirable photoreduction of the iron and copper centres in myoglobin and azurin, respectively, and X-ray crystallography to assess their capacity of mitigating global and specific radiation damage effects. UV-Vis absorption spectra of native crystals, as well as those soaked in 18 different radioprotectants, show dramatic metal reduction occurring in the first 60 s of irradiation with an X-ray beam from a third-generation synchrotron source. Among the tested radioprotectants only potassium hexacyanoferrate(III) seems to be capable of partially mitigating the rate of metal photoreduction at the concentrations used, but not to a sufficient extent that would allow a complete data set to be recorded from a fully oxidized crystal. On the other hand, analysis of the X-ray crystallographic data confirms ascorbate as an efficient protecting agent against radiation damage, other than metal centre reduction, and suggests further testing of HEPES and 2,3-dichloro-1,4-naphtoquinone as potential scavengers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.