Invasive alien species (IAS) are a problem, especially in drought-prone environments such as the Mediterranean Basin where the exacerbation of the already severe conditions could constrain the native species acclimatation degree, creating new opportunities for IAS. Climate change may drive IAS expansions, even if different IAS can vary in their acclimatation response. Thus, it is important to obtain a broader insight of how the different IAS face abiotic stress. This research aimed to compare the effect of the imposed water stress on physiological and morphological leaf traits of Ailanthus altissima (AA), Robinia pseudoacacia (RP), and Phytolacca americana (PA), which are widely spread IAS in the Mediterranean Basin. Our results showed a species-dependent effect of the water stress at a physiological and morphological level, as well as an interaction between species and stress duration. Despite a common strategy characterized by low stomatal control of the photosynthesis, AA, PA, and RP differ in their sensitivity to water stress. In particular, even if AA was characterized by a more water-spending strategy, it was more resistant to water stress than PA and RP. In this view, the key factor was its plasticity to increase leaf mass per area (LMA) in response to water stress.
Invasion of alien plant species (IAS) represents a serious environmental problem, particularly in Europe, where it mainly pertains to urban areas. Seed germination traits contribute to clarification of invasion dynamics. The objective of this research was to analyze how different light conditions (i.e., 12-hr light/12-hr darkness and continuous darkness) and temperature regimes (i.e., 15/6 C, 20/10 C and 30/20 C) trigger seed germination of Ailanthus altissima (AA), Phytolacca americana (PA) and Robinia pseudoacacia (RP). The relationship between seed germination and seed morphometric traits was also analyzed. Our findings highlight that temperature rather than light was the main environmental factor affecting germination. RP germinated at all tested temperatures, whereas at 15/6 C seeds of AA and PA showed physiological dormancy. RP had a higher germination capacity at a lower temperature, unlike AA and PA, which performed better at the highest temperatures. Light had a minor role in seed germination of the three species. Light promoted germination only for seeds of PA, and final germination percentage was 1.5-fold higher in light than in continuous darkness. Seed morphometric traits (thickness [T], area [A] and volume [V]) had a significant role in explaining germination trait variations. The results highlight the importance of increasing our knowledge on seed germination requirements to predict future invasiveness trends. The increase in global temperature could further advantage AA and PA in terms of germinated seeds, as well as RP by enhancing the germination velocity, therefore compensating for a lower germination percentage of this species at the highest temperatures.
A greater relative growth rate (RGR) is positively correlated with a species’ ability to deploy a larger leaf area either due to a greater total number of leaves (LN) in the canopy or due to an average size of individual leaves (LA). This study aimed to analyze and compare, (1) the temporal (i.e., daily) RGR, leaf production rate (LPR), and leaf area production rate (LAPR) changes during the early growth stages of three among the most invasive species in the world, namely, Ailanthus altissima, Phytolacca americana, and Robinia pseudoacacia. (2) the interspecific differences in the relationship between RGR, LPR, LAPR, and mean daily air temperature. Our results show that growth dynamics as a function of temperature differ between invasive alien species (IAS). While these differences are partly explained by differences due to the growth form of the investigated species, the three IAS have a different behavior to adjust RGR, LPR, and LAPR with air temperature changes even within the same growth form, and in agreement with species habitat requirements in their native range. In conclusion, the results help disentangle the relative role of RGR, LPR, and LAPR in defining non-native species growth responses to mean daily air temperature also in relation to a species’ growth form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.