Novel 1,4-dioxane compounds structurally related to WB 4101 (1) were prepared in order to investigate the possibility that the quite planar 1,4-benzodioxane template of 1 might be replaced by the less conformationally constrained 1,4-dioxane ring. The biological profiles of the new compounds were assessed using binding assays at human cloned alpha 1-adrenoreceptor (alpha 1-AR) subtypes and 5-HT 1A receptors, expressed in Chinese hamster ovary and HeLa cell membranes, respectively, and by functional experiments in isolated rat vas deferens (alpha 1A), spleen (alpha 1B), and aorta (alpha 1D). Moreover, the cytotoxic effects of the novel compounds were determined in PC-3 prostate cancer cells. The results showed that the properly substituted 1,4-dioxane nucleus proved to be a suitable scaffold for selective alpha 1D-AR antagonists (compound 14), potential anticancer agents (compound 13), and full 5-HT 1A receptor agonists (compound 15). In particular, compound 15 may represent a novel lead in the development of highly potent 5-HT 1A receptor full agonists useful as antidepressant and neuroprotective agents.
BACKGROUND AND PURPOSEImidazoline I2 receptors have been implicated in several CNS disorders. Although several I2 receptor agonists have been described, no simple and sensitive in vivo bioassay is available for studying I2 receptor ligands. This study examined I2 receptor agonist-induced hypothermia as a functional in vivo assay of I2 receptor agonism.
EXPERIMENTAL APPROACHDifferent groups of rats were used to examine the effects of I2 receptor agonists on the rectal temperature and locomotion. The pharmacological mechanisms were investigated by combining I2 receptor ligands and different antagonists.
KEY RESULTSAll the selective I2 receptor agonists examined (2-BFI, diphenyzoline, phenyzoline, CR4056, tracizoline, BU224 and S22687, 3.2-56 mg·kg -1 , i.p.) dose-dependently and markedly decreased the rectal temperature (hypothermia) in rats, with varied duration of action. Pharmacological mechanism of the observed hypothermia was studied by combining the I2 receptor agonists (2-BFI, BU224, tracizoline and diphenyzoline) with imidazoline I2 receptor/ a2 adrenoceptor antagonist idazoxan, selective I1 receptor antagonist efaroxan, a2 adrenoceptor antagonist/5-HT1A receptor agonist yohimbine. Idazoxan but not yohimbine or efaroxan attenuated the hypothermic effects of 2-BFI, BU224, tracizoline and diphenyzoline, supporting the I2 receptor mechanism. In contrast, both idazoxan and yohimbine attenuated hypothermia induced by the a2 adrenoceptor agonist clonidine. Among all the I2 receptor agonists studied, only S22687 markedly increased the locomotor activity in rats.
CONCLUSIONS AND IMPLICATIONSImidazoline I2 receptor agonists can produce hypothermic effects, which are primarily mediated by I2 receptors. These data suggest that I2 receptor agonist-induced hypothermia is a simple and sensitive in vivo assay for studying I2 receptor ligands.
Abbreviations
A series of derivatives structurally related to biphenyline (3) was designed with the aim to modulate selectivity toward the alpha(2)-AR subtypes. The results obtained demonstrated that the presence of a correctly oriented function with positive electronic effect (+sigma) in portion X of the ligands is an important factor for significant alpha(2C)-subtype selectivity (imidazolines 5, 13, 16, and 19). Homology modeling and docking studies support experimental data and highlight the crucial role for the hydrogen bond between the pyridine nitrogen in position 3 of 5 and the NH-indole ring of Trp6.48, which is favorably oriented in the alpha(2C)-subtype, only.
A number of derivatives structurally related to cirazoline (1) were synthesized and studied with the purpose of modulating alpha2-adrenoreceptors selectivity versus both alpha1-adrenoreceptors and I2 imidazoline binding sites. The most potent alpha2-agonist was 2-[1-(biphenyl-2-yloxy)ethyl]-4,5-dihydro-1H-imidazole (7), whose key pharmacophoric features closely matched those found in the alpha2-agonist 2-(3-exo-(3-phenylprop-1-yl)-2-exo-norbornyl)amino-2-oxazoline (15). (S)-(-)-7 was the most potent of the two enantiomers, confirming the stereospecificity of the interaction with alpha2-adrenoreceptors. This eutomer was tested on two algesiometric paradigms and, because of the interaction with alpha2-adrenoreceptors, showed a potent and long-lasting antinociceptive activity, since it was abolished by the selective alpha2-antagonist RX821002.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.