BACKGROUND:The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from the chromosome inversion inv(2)(p21;p23) recently was identified in non-
BackgroundThe cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential.Methodology/Principal FindingThe expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas.Conclusion/SignificanceOverall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment.
Purpose:This study evaluated the mutational profile of epidermal growth factor receptor (EGFR) and KRAS in non^small cell lung cancers in Hong Kong and determined their relation with smoking history and other clinicopathologic features. Experimental Design: Mutational profile of exons 18 to 21of EGFR and codons12,13, and 61of KRAS were determined in 215 adenocarcinomas, 15 squamous cell (SCC), and 11EBV-associated lymphoepithelioma-like carcinomas (LELC). Results: EGFR mutations were prevalent in adenocarcinomas (115 of 215), uncommon in LELC (1of 11), and not found in SCC (P < 0.001). Among adenocarcinomas, mutations were associated with nonsmokers (83 of 111; P < 0.001), female gender (87 of 131; P < 0.001), and welldifferentiated (55 of 86) compared with poorly differentiated (11 of 41) tumors (P < 0.001).Decreasing mutation rates with increasing direct tobacco exposure was observed, with 74.8% (83 of 111) in nonsmokers, 61.1% (11of 18) in passive, 35.7% (10 of 28) in previous, and 19.0% (11of 58) in current smokers. There were 53% amino acid substitutions, 43% in-frame deletions, and 4% insertions. Complex patterns with 13% double mutations, including five novel substitutions, were observed. For KRAS, mutations occurred in adenocarcinoma only (21 of 215) and were associated with smokers (11of 58; P = 0.003), men (14 of 84; P = 0.009) and poorly differentiated (7 of 41) compared with well-differentiated (4 of 86) tumors (P = 0.037). EGFR and KRAS mutations occurred in mutually exclusive tumors. Regression analysis showed smoking history was the significant determinant for both mutations, whereas gender was a confounding factor. Conclusion: This study shows EGFR mutations are prevalent in lung adenocarcinoma and suggests that it plays an increasing oncogenic role with decreasing direct tobacco damage.
Poor human-to-human transmission of influenza A H5N1 virus has been attributed to the paucity of putative sialic acid alpha2-3 virus receptors in the epithelium of the human upper respiratory tract, and thus to the presumed inability of the virus to replicate efficiently at this site. We now demonstrate that ex vivo cultures of human nasopharyngeal, adenoid and tonsillar tissues can be infected with H5N1 viruses in spite of an apparent lack of these receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.