BackgroundThe cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential.Methodology/Principal FindingThe expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas.Conclusion/SignificanceOverall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment.
Our current understanding of nitric oxide (NO), cyclic GMP (cGMP) and protein kinase G (PKG) signaling pathways in the nervous systems has its origins in the early studies conducted on vascular tissues during the late 1970s and early to mid-1980s. The pioneering research into the NO/cGMP/PKG pathway in blood vessels conducted by the laboratories of Drs. Ferid Murad, Louis Ignarro and Robert Furchgott ultimately led to the awarding of the 1998 Nobel Prize in Physiology or Medicine to these three scientists. On the basis of further pioneering studies by Drs. John Garthwaite, Solomon Snyder, Steven Vincent and many other neuroscientists during the late 1980s and throughout the 1990s, it became recognized that NO serves as a neurotransmitter/neuromodulator in the central and peripheral nervous systems and that certain neural cells possess a cGMP signaling pathway similar to that in vascular smooth muscle cells. Although NO (at high concentrations) is toxic and thought to participate in neuronal cell death during stroke and neurodegenerative diseases (e.g. amyotrophic lateral sclerosis, Alzheimer’s disease, HIV dementia and Parkinson’s disease), recent evidence suggests that NO at low physiological concentrations can act as an antiapoptotic/prosurvival factor in certain neural cells (e.g. PC12 cells, motor neurons and neurons of dorsal root ganglia, hippocampus and sympathetic nerves). The antiapoptotic effects of NO are mediated, in part, by cGMP and a downstream target protein, PKG. Other cGMP-elevating factors (e.g. atrial and brain natriuretic peptides) and direct PKG activator (e.g. 8-bromo-cGMP) also have antiapoptotic effects which have been quantified by the new capillary electrophoresis with laser-induced fluorescence detector technology. Inhibition of soluble guanylyl cyclase and lowering of basal cGMP levels cause apoptosis in unstressed neural cells (NG108-15 and N1E-115 cells). The cGMP/PKG pathway appears to play an essential role in preventing activation of a proapoptotic pathway, thus promoting neural cell survival.
Previously, we showed that basal activity of nitric oxide (NO)/cyclic GMP (cGMP)/protein kinase G (PKG) signaling pathway protects against spontaneous apoptosis and confers resistance to cisplatin-induced apoptosis in human ovarian cancer cells. The present study determines whether basal PKG kinase activity regulates Src family kinase (SFK) activity and proliferation in these cells. PKG-Iα was identified as predominant isoform in both OV2008 (cisplatin-sensitive, wild-type p53) and A2780cp (cisplatin-resistant, mutated p53) ovarian cancer cells. In both cell lines, ODQ (inhibitor of endogenous NO-induced cGMP biosynthesis), DT-2 (highly specific inhibitor of PKG-Iα kinase activity), and PKG-Iα knockdown (using small interfering RNA) caused concentration-dependent inhibition of DNA synthesis (assessed by bromodeoxyuridine incorporation), indicating an important role of basal cGMP/PKG-Iα kinase activity in promoting cell proliferation. DNA synthesis in OV2008 cells was dependent on SFK activity, determined using highly selective SFK inhibitor, 4-(4′-phenoxyanilino)-6,7-dimethoxyquinazoline (SKI-1). Studies using DT-2 and PKG-Iα small interfering RNA revealed that SFK activity was dependent on PKG-Iα kinase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.