BackgroundIn animals, anogenital distance (AGD) at birth reflects androgen levels during pregnancy and predicts adult AGD. Little is known about AGD in relation to female reproductive characteristics in humans, a question this study was designed to explore.MethodsWe used multiple linear and logistic regression analyses to model the relationships between adult female reproductive system characteristics (e.g. ovarian morphology, menstrual cycle) and two measures of AGD [anus-fourchette (AGDAF) and anus-clitoris (AGDAC)] in 100 college-age volunteers in Spain. Ovarian morphology was classified as having < 6 or ≥ 6 follicles per ovary.ResultsBoth AGD measures were positively associated with ovarian follicle number, with AGDAF being more strongly associated. Women in the upper tertile of the AGDAF and AGDAC distributions were more likely to have ≥ 6 ovarian follicles [OR: 6.0 (95% CI 2.0, 17.6) and 3.0 (95% CI 1.1, 8.6), respectively] compared to women in the lowest tertile.ConclusionsIncreased follicular recruitment has been related to excess androgen exposure in utero in toxicological studies. Our results suggest that the androgenic environment during early fetal life may influence reproductive system development, including AGD, in human females.
Animal models suggest that anogenital distance (AGD) at birth reflects androgen concentrations during in-utero development and predicts adult AGD. Several human observational studies show an association between menstrual cycle irregularities and a hyperandrogenic environment and that may result in a potential alteration of the female reproductive tract during in-utero development. This study examined associations between AGD of young women and their mother's gynaecological characteristics before or during pregnancy. This is cross-sectional study of 100 college-age volunteers in southern Spain. Physical and gynaecological examinations were conducted on the young women and they and their mothers completed epidemiological questionnaires on lifestyles and gynaecological history. Linear regression analysis was used to examine the association between AGD measurements (anus-fourchette (AGDAF) and anus-clitoris (AGDAC)) of women and their mother's gynaecological characteristics. Longer AGDAF was associated with the presence of mother's menstrual cycle irregularities before pregnancy (P=0.03). Longer female AGD has been related to excess androgen exposure in utero in toxicological studies. The current findings may be consistent with studies in which an association between menstrual cycle irregularities and an hyperandrogenic environment has been reported, which therefore may result in a potential modification of the female offspring's reproductive tract during in-utero development, including AGD. Rodent models suggest that perineal length at birth reflects male hormone concentrations (androgens) during in-utero development and predicts adult perineal length. Several human studies show a relationship between menstrual cycle irregularities and an excessive androgen environment. We hypothesize that androgen excess may result in a potential alteration of the female reproductive tract during in-utero development. Our aim was to examine associations between perineal length of young women and their mother's gynaecological characteristics before or during pregnancy. This is a study of 100 college-age volunteers in Southern Spain. Physical and gynaecological examinations were conducted on the young women and they and their mothers completed epidemiological questionnaires on lifestyles and gynaecological history. We used multivariate analyses to assess the association between perineal length of women and their mother's gynaecological characteristics. Longer perineal length was associated with the presence of mother's menstrual cycle irregularities before pregnancy. Longer female perineal length has been related to excess androgen exposure in utero in rodent studies. Our findings may be consistent with previous studies in which an association between menstrual cycle irregularities and an excess of androgen has been reported, which therefore may result in a potential modification of the female offspring's reproductive tract during in-utero development, including perineal length.
Background Cystic fibrosis (CF) has a vast and heterogeneous mutational spectrum in Europe. This variability has also been described in Spain, and there are numerous studies linking CFTR variants with the symptoms of the disease. Most of the studies analysed determinate clinical manifestations or specific sequence variants in patients from clinical units. Others used registry data without addressing the genotype–phenotype relationship. Therefore, the objective of this study is to describe the genetic and clinical characteristics of people with CF and to analyse the relationship between both using data from the rare disease registry of a region in southeastern Spain. Methods A cross-sectional study was carried out in people with a confirmed diagnosis of CF registered in the Rare Diseases Information System (SIER) of the Region of Murcia (Spain). The patients were classified into two genotypes according to the functional consequence that the genetic variants had on the CFTR protein. Results There were 192 people diagnosed with CF reported in the Region of Murcia as of 31 December 2018. Seventy-six genotypes and 49 different variants were described, with c.1521_1523delCTT (p. Phe508del) being the most common in 58.3% of the CF patients and 37.0% of the alleles. In addition, 67% of the patients were classified as a high-risk genotype, which was associated with a lower percentage of FEV1 (OR: 5.3; 95% CI: 1.2, 24.4), an increased risk of colonization by Pseudomonas aeruginosa (OR: 7.5; 95% CI: 1.7, 33.0) and the presence of pancreatic insufficiency (OR: 28.1; 95% CI: 9.3, 84.4) compared to those with a low-risk genotype. Conclusions This is the first study in Spain that describes the mutational spectrum and its association with clinical manifestations in patients with CF using data from a rare disease registry. The results obtained allow planning for the health resources needed by people with this disease, thus contributing to the development of personalized medicine that helps to optimize health care in CF patients.
Background: Cystic fibrosis (CF) has a very heterogeneous mutational spectrum in Europe. This variability has also been described in Spain, and there are numerous studies that relate CFTR variants with the symptoms of the disease. Most of them analyze determinate clinical manifestations or specific sequence variants in patients from clinical units. Others use registry data without addressing the genotype-phenotype relationship. Therefore, the objective of this study is to describe the genetic and clinical characteristics of people with CF, and to analyze the relationship between both, using data from the rare diseases registry of a region in southeastern Spain.Methods: A cross-sectional study was carried out in people with a confirmed diagnosis of CF registered in the Rare Diseases Information System (SIER) of the Region of Murcia (Spain). The patients were classified into two genotypes according to the functional consequence that the genetic variants had on the CFTR protein.Results: There were 192 people diagnosed with CF reported in the Region of Murcia until December 31, 2018. Seventy-six different variants were described being the most common c.1521_1523delCTT (p.Phe508del) in 58.3% of people and 37.0% of alleles. Sixty-seven percent of the patients were classified as high-risk genotype, which was associated with a lower percentage of FEV1 [OR: 3.4 (95%CI: 1.1, 10.8)], an increased risk of colonization by Pseudomonas aeruginosa and Achromobacter xylosoxidans [OR: 4.2 (95%CI: 1.3, 13.8) and 7.1 (95%CI: 1.1, 47.2), respectively] and the presence of pancreatic insufficiency [OR: 21.8 (95%CI: 7.9, 59.9)] as compared with those with mild variants.Conclusions: The Region of Murcia has one of the lowest allele frequencies of p.Phe508del described in Europe and high genetic heterogeneity, which could explain the high proportion of patients with mild disease. Furthermore, our results support the association between genotypes compound of two severe variants and the presence of pancreatic insufficiency, increased risk of respiratory infection, and serious lung damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.