Background Chronic obstructive pulmonary disease, cystic fibrosis and usual interstitial pneumonia are three most common indications for lung transplantation (LuTx) in Poland. As a result of irreversible destruction of pulmonary parenchyma and extended respiratory insufficiency that appear afterwards, it is crucial to estimate the reserve of gas exchange in each lung before and during surgery. Altering conditions of gas exchange require adaptation in circulatory system as well. In some of the cases the use of extracorporeal life support appears to be necessary to undergo the transplantation successfully. Cardiopulmonary bypass (CPB) or extracorporeal membrane oxygenation (ECMO) used during operation allow to replace the function of heart and lung, but they are also related to complications in the form of acute kidney failure, bleeding, heart arrhythmias or thromboembolic complications. Methods We reviewed 77 LuTx from 2009 to 2020 performed at the Department of Thoracic Surgery and Transplantation. 40/77 (51%) patients required intraoperative extracorporeal assistance: 8 required CBP and 32 required ECMO. In the ECMO group 14/32 (44%) patients had peripheral cannulation and 18/32 (56%) had central one. We have calculated the survival rates and reviewed postoperative complications after lung transplantations. Cumulative Kaplan–Meier survival curves were calculated. Differences between the groups were evaluated by the Chi- square analysis for discontinuous variables and t-test for continuous variables. Results The use of intraoperative central extracorporeal membrane oxygenator was associated with increased survival rates comparing to patients without external support (30-days, 1-year, 3-years, 5-years rates: 78%, 66%, 66%, 66% vs 83%, 65%, 59%, 44% respectively). Furthermore, survival was enhanced comparing to peripheral ECMO or cardiopulmonary bypass as well (50%, 41%, 41%, 33%; 75%, 50%, 50%, 38% respectively). Acute kidney injury and thromboembolic complications occurred statistically more often in case of patients that underwent lung transplantation with support devices (p = 0.005, p = 0.02 respectively). Frequency of other complications was comparable among groups. Conclusions The use of central extracorporeal membrane oxygenation should be favorized over peripheral cannulation or cardiopulmonary bypass. CPB should be no longer used during LuTx. Trial registration Not applicable.
BACKGROUND: We previously developed molecular assessment systems for lung transplant transbronchial biopsies (TBBs) with high surfactant and bronchial mucosal biopsies, identifying Tcell-mediated rejection (TCMR) on the basis of the expression of rejection-associated transcripts, but the relationship of rejection to graft loss is unknown. This study aimed to develop molecular assessments for TBBs and mucosal biopsies and to establish the impact of molecular TCMR on graft survival. METHODS: We used microarrays and machine learning to assign TCMR scores to an expanded cohort of 457 TBBs (367 high surfactant plus 90 low surfactant) and 314 mucosal biopsies. We tested the score agreement between TBB−TBB, mucosal−mucosal, and TBB−mucosal biopsy pairs in the same patient. We also assessed the association of molecular TCMR scores with graft loss (death or retransplantation) and compared it with the prognostic associations for histology and donor-specific antibodies. RESULTS: The molecular TCMR scores assigned in all the TBBs performed similarly to those in high-surfactant TBBs, indicating that variation in alveolation in TBBs does not prevent the detection of TCMR. Mucosal biopsy pieces showed less piece-to-piece variation than TBBs. TCMR scores in TBBs agreed with those in mucosal biopsies. In both TBBs and mucosal biopsies,
Transplanted lungs suffer worse outcomes than other organ transplants with many developing chronic lung allograft dysfunction (CLAD), diagnosed by physiologic changes. Histology of transbronchial biopsies (TBB) yields little insight, and the molecular basis of CLAD is not defined. We hypothesized that gene expression in TBBs would reveal the nature of CLAD and distinguish CLAD from changes due simply to time posttransplant. Whole‐genome mRNA profiling was performed with microarrays in 498 prospectively collected TBBs from the INTERLUNG study, 90 diagnosed as CLAD. Time was associated with increased expression of inflammation genes, for example, CD1E and immunoglobulins. After correcting for time, CLAD manifested not as inflammation but as parenchymal response‐to‐wounding, with increased expression of genes such as HIF1A, SERPINE2, and IGF1 that are increased in many injury and disease states and cancers, associated with development, angiogenesis, and epithelial response‐to‐wounding in pathway analysis. Fibrillar collagen genes were increased in CLAD, indicating matrix changes, and normal transcripts were decreased—dedifferentiation. Gene‐based classifiers predicted CLAD with AUC 0.70 (no time‐correction) and 0.87 (time‐corrected). CLAD related gene sets and classifiers were strongly prognostic for graft failure and correlated with CLAD stage. Thus, in TBBs, molecular changes indicate that CLAD primarily reflects severe parenchymal injury‐induced changes and dedifferentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.