Using different methods of statistics, this paper aims to highlight the potential link between the antioxidant activity of flavonoids and the corresponding molecular descriptors. By calculating the descriptors (van der Waals surface (A), molar volume (V), partition coefficient (LogP), refractivity (R), polarizability (a), forming heat (Hformation), hydration energy (Ehidr), the dipole moment (mt)), together with antioxidant activities (RSA) calculated or taken from the literature, number of phenolic -OH groups and the presence (2) or absence (1) of C2=C3 double bond) for 29 flavonoid compounds and by intercorrelation between the studied parameters, the link between the number of phenolic groups grafted to the basic structure of flavonoids and their antioxidant activity was confirmed. Simultaneously, by using the chi-squared test and the intercorrelations matrix, a satisfactorily correlation coefficient (r2=0.5678; r=0.7536) between the structure of the flavonoids and their activity was obtained, fact that confirms the correlation of the antioxidant activity with the number of -OH phenolic groups.
Honey is used in food industry and medicine due to its nutritive, therapeutic and dietetic qualities. The microbiological characteristics of 10 unpasteurized honey samples of known origin, collected from Transylvania beekeepers (Romania) were determined. The antibacterial activity of these types of honey against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enteritidis, Salmonella anatum, Salmonella choleraesuis, Bacillus cereus, Bacillus subtilis subsp. spizizenii and Listeria monocytogenes strains was studied. The most sensitive to the antibacterial activity were the two staphylococus strains (the largest diameter of inhibition zone was 18 mm) and B. subtilis strains (13.5 mm). The strains of B. cereus, E. coli, L. monocytogenes and Salmonella spp. were found to present resistance to some of the honey samples. Manna, sunflower and polyfloral honeys presented high antibacterial activity while acacia and linden honeys had a lower activity in terms of the number of sensible strains. Statistical analysis shows that the type of strains and the type of honey have influence on the diameter of inhibition.
Various powders of graphene oxide (GO), GO with silver (GO-Ag) and zinc oxide (GO-ZnO) were obtained. The powders were silanized with (3-aminopropyl) triethoxysilane (APTES) aiming to be used, in a future stage, as additives in the hydraulic lime mortars composition. The powders were characterized by Fourier Transform Infrared Spectrometry (FTIR) and Scanning Electron Microscopy (SEM) before and after the silanization process. GO, GO-Ag, GO-Ag-APTES, GO-ZnO and GO-ZnO-APTES powders were also investigated by Thermogravimetric Analysis (TG/DTA) and Ultraviolet–Visible Spectroscopy (UV-Vis). Likewise, the antibacterial effect of powders against five bacterial strains was evaluated. The peaks associated to the functional groups from GO, GO-APTES, GO-Ag, GO-Ag-APTES, GO-ZnO and GO-ZnO-APTES powders were identified by FTIR analysis. The mass losses of powders, analyzed by TG/DTA were lower than those recorded for GO. By UV-VIS analysis, maxima corresponding to the electronic π-π * and n-π * transitions were recorded. SEM images highlighted the lamellar and layered structure of GO, but also the presence of Ag and Zn nanoparticles on the surface of graphene sheets. All these results confirm the presence of Ag/ZnO/APTES on the GO. The antibacterial effect evaluated by recording the diameter of the inhibition zone ranged between 12–22 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.