The field of machine learning is witnessing its golden era as deep learning slowly becomes the leader in this domain. Deep learning uses multiple layers to represent the abstractions of data to build computational models. Some key enabler deep learning algorithms such as generative adversarial networks, convolutional neural networks, and model transfers have completely changed our perception of information processing. However, there exists an aperture of understanding behind this tremendously fast-paced domain, because it was never previously represented from a multiscope perspective. The lack of core understanding renders these powerful methods as black-box machines that inhibit development at a fundamental level. Moreover, deep learning has repeatedly been perceived as a silver bullet to all stumbling blocks in machine learning, which is far from the truth. This article presents a comprehensive review of historical and recent state-of-the-art approaches in visual, audio, and text processing; social network analysis; and natural language processing, followed by the in-depth analysis on pivoting and groundbreaking advances in deep learning applications. It was also undertaken to review the issues faced in deep learning such as unsupervised learning, black-box models, and online learning and to illustrate how these challenges can be transformed into prolific future research avenues.
More than one billion people will face water scarcity within the next ten years due to climate change and unsustainable water usage, and this number is only expected to grow exponentially in the future. At current water use rates, supply-side demand management is no longer an effective way to combat water scarcity. Instead, many municipalities and water agencies are looking to demand-side solutions to prevent major water loss. While changing conservation behavior is one demand-based strategy, there is a growing movement toward the adoption of water conservation technology as a way to solve water resource depletion. Installing technology into one's household requires additional costs and motivation, creating a gap between the overall potential households that could adopt this technology, and how many actually do. This study identified and modeled a variety of demographic and household characteristics, social network influence, and external factors such as water price and rebate policy to see their effect on residential water conservation technology adoption. Using Agent-based Modeling and data obtained from the City of Miami Beach, the coupled effects of these factors were evaluated to examine the effectiveness of different pathways towards the adoption of more water conservation technologies. The results showed that income growth and water pricing structure, more so than any of the demographic or building characteristics, impacted household adoption of water conservation technologies. The results also revealed that the effectiveness of rebate programs depends on conservation technology cost and the affluence of the community. Rebate allocation did influence expensive technology adoption, with the potential to increase the adoption rate by 50%. Additionally, social network connections were shown to have an impact on the rate of adoption independent of price strategy or rebate status. These findings will lead the way for municipalities and other water agencies to more strategically implement interventions to encourage household technology adoption based on the characteristics of their communities.
Occupant behavior is a significant contributor to energy waste in buildings. This research introduces an advanced smartphone application, developed based on the theoretical underpinnings of situational awareness theory, to effectively implement multi-method and personalized intervention to encourage energy conservation behaviors of building occupants. The new smart application provides several innovative features, such as energy saving points, customized feedback, and visualized user interface, which are implemented in the application to support multi-method interventions. The application was created using the Java language for Android devices. With the use of the Android platform, the app takes advantage of hardware technology from the user's mobile device. Measurement of occupancy behavior is accomplished by making use of the device's positional sensors. Orientation and geomagnetic field sensors serve to provide an accurate location of an occupant inside the building. The application can determine energy waste in a zone by using occupancy behavior. Moreover, the application offers real-time and projected future energy consumption based on occupants' behaviors. This novel feature can significantly improve communication that can lead to prompt action for building energy reduction. Results show how the app can compile raw data on energy behavior and make it easy to understand for the user through the use of visuals and statistical algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.